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SUMMARY 

 

Currently, one out of every eight women in the U.S. will be diagnosed with breast cancer 

in their lifetime. Cysteine cathepsin proteases are powerful collagenases and elastases that 

play an important role in matrix remodeling and are upregulated in various diseases such 

as atherosclerosis, osteoporosis, and cancer. During cancer progression, tumor cells 

upregulate cysteine cathepsins to assist with the invasion and metastasis of the tumor. This 

has motivated pharmaceutical companies to develop protease inhibitors, but many have 

failed clinical trials due to adverse side effects. Currently there is limited research 

investigating cellular feedback mechanisms caused by cathepsin inhibitors. This highlights 

a need to understand how cathepsin inhibition affects cathepsin production. The objective 

of this work is to elucidate cellular feedback regulations of cysteine cathepsins during 

broad spectrum inhibition and possible mechanisms in order to develop more effective 

cathepsin inhibitors for breast cancer therapies. 

This was accomplished by developing tools to selectively distinguish active 

cathepsins K, L, S, and V to appropriately quantify their levels in cells and tissue. Next, 

the inhibitor-induced effects on cathepsin activity with chemical or protein inhibitors in 

breast cancer cells was determined. Mechanisms by which inhibition of cathepsin activity 

induced active cathepsins were elucidated, and finally, the role in substrate degradation and 

cell invasion was investigated. The results of this work provide tools to selectively 

distinguish cathepsins by taking advantage of pH and substrate regulation and identifies a 

feedback response that elevates active cathepsins in response to cathepsin inhibition. These 

findings also demonstrate an interaction that occurs between two cathepsins within the 
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cathepsin proteolytic network. Currently, there are limited studies investigating the effects 

of cathepsin inhibition on the cellular regulation of cathepsin amounts. Not only are these 

findings important for providing more effective treatment options for breast cancer, but 

this work has broad implications since cathepsins have been implicated in diseases such as 

HIV, atherosclerosis, and osteoporosis. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Currently, one out of every eight women in the U.S. will be diagnosed with breast cancer 

in their lifetime. The American Cancer Society reported that survival rates decrease 

dramatically to 26% for metastatic or distant tumors compared to 85% for regionally 

migrated tumors and 99% for localized tumors [1]. With a dismal survival rate, there is a 

dire need for more research focused on metastatic cancer detection and treatment. 

Cysteine cathepsin proteases are powerful collagenases and elastases that play an 

important role in matrix remodeling and are upregulated in various diseases such as 

atherosclerosis, osteoporosis, and cancer [2-7]. During cancer progression, tumor cells 

upregulate cysteine cathepsins to assist with the invasion and metastasis of the tumor [5, 

8-11]. Under physiological conditions, cathepsins are inhibited intracellularly and 

extracellularly by the family of protein inhibitors cystatins including cystatin B, also 

known as stefin B, and cystatin C, respectively [12]. Reduced protein levels of cystatin 

M, were reported to occur in invasive ductal carcinoma tissue [10]. This has motivated 

pharmaceutical companies to develop protease inhibitors, but many have failed clinical 

trials due to adverse side effects [13]. However, more focus has been directed toward 

targeting these proteases for cancer treatments due to the research demonstrating the 

important role of cysteine cathepsins in cancer progression and metastasis [13, 14]. 

Moreover, clinical studies have primarily used cysteine cathepsin inhibitors to treat bone 

related diseases such as osteoporosis and bone metastasis [15-17] even though in vivo 
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studies have suggested the need for cysteine cathepsin inhibitors to inhibit cancer 

invasion and metastasis [7, 10, 13, 18-20]. 

This is in contrast to therapies developed to target matrix metalloproteinases (MMPs), 

another family of proteases also identified as players in cancer invasion, which were not 

effective in reducing cancer progression during clinical trials using MMP broad-spectrum 

family inhibitors [13, 18, 19, 21-23]. Compared to the MMP clinical trials, the clinical 

trials using cathepsin inhibitors have shown that the inhibitors are efficacious, although 

they do cause adverse side effects [13, 24]. Currently there is limited research 

investigating cellular feedback mechanisms caused by cathepsin inhibitors. This 

highlights a need to understand how cathepsin inhibition affects cathepsin production, 

and for the development of tools capable of reliably measuring active cathepsins. 

The cathepsin proteolytic network is a dynamic system involving 11 proteases, 11 

endogenous inhibitors, pro-peptide cleavage, auto-activation, substrate promiscuity, 

competitive inhibition, and enzyme inactivation, along with interactions among different 

protease families. Thus, it is important to understand how perturbations within the 

cathepsin network due to inhibition affects the system and induces any compensatory 

mechanisms. However, little research has examined such compensatory mechanisms. This 

thesis investigates the cellular regulation of cysteine cathepsins during broad spectrum 

inhibition and possible mechanisms in order to develop more effective cathepsin inhibitors 

for cancer therapies. 
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1.2 Research Objectives 

 

The objective of this research is to elucidate cellular feedback mechanisms due to broad 

spectrum cysteine cathepsin inhibitors in breast cancer. This objective will assist with 

achieving the overall goal to understand cathepsin inhibitor-induced cellular mechanisms 

that could be contributing to adverse side effects that occur during therapeutic cathepsin 

inhibitor administration. 

The central hypothesis is that perturbing the cathepsin proteolytic network with a 

small molecule or protein cathepsin inhibitor induces a feedback between cathepsin 

inhibition and production which upregulates cathepsin protein expression and activity. This 

hypothesis will be evaluated using the following aims: 

 

Specific Aim 1: Develop tools to distinguish pro-, mature, and inactive cathepsins K, 

L, S, and V to appropriately quantify their levels in cells and tissue 

Hypothesis: If cathepsins K, L, S, and V have different regulatory properties for activity, 

then selectivity for cathepsins K, L, S, or V can be obtained by varying the assay buffer pH 

and the substrate within the electrophoresis gel. The electrophoretic migration of 

recombinant cathepsins K, L, S, and V was identified using the modified sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method, zymography. 

Recombinant cathepsins K, L, S, and V were incubated at various pHs and with different 

substrates and the activity measured to determine conditions for selectivity. Cell lysates 

and tissue samples were assayed using gelatin cathepsin zymography to confirm selectivity 

in systems containing more cathepsins, cell types, and matrices. It was found that by taking 

advantage of different pH and substrate preferences of cathepsins, proteolytic activity of 
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cathepsins K, L, S and V in human cells and tissue samples was selectively detected. The 

selectivity was accomplished even when distinguishing between homologous cathepsins. 

 

Specific Aim 2: Determine inhibitor-induced effects on cathepsin activity with 

chemical or protein inhibition in breast cancer cells 

Hypothesis: During cathepsin inhibition, the amount of active and total cathepsins will be 

decreased in breast cancer cells. MDA-MB-231 breast cancer cells were assayed using 

multiplex zymography and Western blots to quantify the amount and time dependent 

activation of cathepsins when either stimulated with broad spectrum cathepsin inhibitors 

E-64, cystatin C, or transfected with cystatin C overexpression plasmids. The cathepsin 

cellular localization was identified using immunostaining and confocal imaging. The effect 

of cathepsin inhibitors on secreted cathepsins was detected using multiplex zymography 

and Western blots. Active cathepsins S and L were detected in the MDA-MB-231 cells. E-

64 incubation with MDA-MB-231 cells upregulated the amount of active cathepsin S while 

reducing cathepsin L. Cystatin C incubation and overexpression also caused elevation in 

cathepsin S. The differential response of cathepsin S and L was due in part to differences 

in cellular location.  

 

Specific Aim 3: Elucidate mechanisms by which inhibition of cathepsin activity 

induces active cathepsins and investigate its role in substrate degradation and cell 

invasion 

Hypothesis: Inhibitor-induced upregulation of active cathepsin S is due to active 

cathepsin L and the cathepsin S upregulation will increase substrate degradation and 
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cancer cell invasion. The amount of active and total cathepsin protein amounts in non-

transformed and cancerous human epithelial cells, macrophages, and tissue treated with 

E-64 was determined. In addition, effects of cathepsin L protein on the inhibitor-induced 

elevation of cathepsin S were assessed in murine models which do not express cathepsin 

L. Cystatin overexpression models were used to investigate the role of cathepsin 

inhibitors on breast cancer cell substrate degradation and invasion. Cathepsin inhibition 

increased the amount of active cathepsin S in the non-cancerous human breast tissue and 

macrophages. The upregulation of cathepsin S was regulated by cathepsin L as validated 

in the murine models lacking cathepsin L expression. 

The results of this work provide tools to selectively distinguish cathepsins by taking 

advantage of pH and substrate regulation and identifies a feedback mechanism that 

elevates active cathepsins in response to cathepsin inhibition. These findings also 

demonstrate an interaction that occurs between two cathepsins within the cathepsin 

proteolytic network. Currently, there are limited studies investigating the effects of 

cathepsin inhibition on the cellular regulation of cathepsin amounts. Not only are these 

findings important for providing more effective treatment options for breast cancer, but 

this work has broad implications since cathepsins have been implicated in diseases such 

as HIV, atherosclerosis, and osteoporosis. 
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CHAPTER 2 

Background 

2.1  Breast Cancer 

In 2012, there was an estimated 14.1 million new cancer cases worldwide and this 

number is expected to increase to 21.7 million by 2030 [25, 26]. While this disease 

effects millions of people world-wide, the U.S alone has 1.6 million new cases expected 

in 2016. While progress in treatments and diagnosis has risen the five-year relative 

survival rate up at least 20% since 1977, in 2016, an estimated 595,690 deaths will occur 

due to the disease. In the U.S., cancer is the 2nd leading cause of death, and in 2011 the 

medical costs had reached up to $88.7 billion [1, 27]. 

In women, breast cancer is one of the most common cancers diagnosed in women 

with one in eight women being diagnosed in their lifetime. An estimated 29% of new 

cancer cases diagnosed in women will be breast cancer [28, 29]. Breast cancer can be 

grouped into two main categories: carcinomas and sarcomas. Sarcomas arise due to 

transformations that occur in the cells that make up the connective tissue including 

adipocytes, myofibroblasts, fibroblasts or other cell types located in soft tissue. This is in 

contrast to carcinomas, of which make up a majority of breast cancers, which occur due 

to transformation of epithelial cells that serve as lining of the lobules within the breast 

tissue.  

Currently, the TNM system is used to classify a patient’s tumor stage. With this 

system, the extent of primary tumor growth, spread to any lymph node, and the 

establishment of distant metastasis to other organs is used as markers for classification. 

There are four stages of cancer along with stage 0, which is known as in situ and is often 
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considered to be non-invasive or pre-cancerous. In Stage I and stage II the tumor cells 

have only invaded the local surrounding tissue and the survival rate is 99%. By stage III, 

which has regional invasion, the survival rate is lowered to 85%. Once the classification 

reaches stage IV, the cancer cell invasion is distant and usually metastatic. The survival 

rate at stage IV drops dramatically to only 26%. This dismal survival rate has led 36% of 

women with stage I or II to undergo double mastectomy surgery, an invasive surgery in 

which both breasts are removed and is often used as a preventative measure [28, 30]. 

Breast cancers can be further classified based on the presence of different hormone or 

growth factor receptors. Estrogen and progesterone are major sex hormones that bind to 

nuclear receptors in target tissues and act as transcription factors [31-33]. Estrogen 

receptor (ER)- or progesterone receptor (PR)-positive tumors accounted for 84% of 

diagnosed breast cancer in 2012 [28]. Human epidermal growth factor receptor (HER) is 

a family of receptor tyrosine kinases which bind to members of the epidermal growth 

factor family such as epidermal growth factor (EGF). Overexpression of HER2 increases 

cell proliferation due to the sensitivity toward growth factors such as EGF that promote 

proliferation [34-36], and approximately 14% of breast cancers cases in 2012 were 

HER2-positive [28]. Tumors classified as triple negative are characterized as being 

negative for ER, PR, and HER2. Triple-negative breast cancers tend to be more 

aggressive [37], occur in younger women along with non-Hispanic black or Hispanic 

women, and have a lower 5 year survival rate compared to other types of breast cancers 

[38]. 

Mutations in the BRCA1 and BRCA2 genes have also been associated with increased 

risk of breast cancer [39-41]. The relative risk of breast cancer incidence for BRCA1 
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mutation carriers peaks at 33% for the age range 30-39 years. The peak for BRCA2 

mutation carriers occurs in the 20-29 year old age group with a 19% relative risk [42]. 

Thus, genetic testing for BRCA1 and BRCA2 gene mutations has been used to guide 

decisions on interventions such as preventative surgery [43, 44]. 

2.2  Cathepsins in Breast Cancer 

Human epithelial breast cancer cells have been reported to acidify the extracellular 

milieu [45], which provides an optimal environment for cathepsin activity in the 

pericellular environment since the optimal pH for most cathepsin activity ranges from 

five to six [46-48]. During cancer progression, transformed cancer cells reduce cell-cell 

and cell-matrix attachments and elevate protease expression and activity [49-55]. The 

loss of adhesion and increased proteolysis is thought to promote cancer cell invasion and 

metastasis [56] especially for breast carcinoma cells which tend to migrate in chains and 

clusters [57, 58]. Zhang et al indirectly demonstrated cathepsins’ involvement in tumor 

growth by orthotopically injecting breast cancer cells overexpressing cystatin M, one of 

the cathepsin protein inhibitors from the cystatin family, into mice. Cystatin M 

overexpression reduced primary tumor volume and the number of metastasized cells. The 

involvement of cathepsins in tumor growth and metastasis is important to understand 

especially since minimal cystatin M protein expression was reported in the invasive 

ductal carcinoma human breast tissue compared to normal human breast tissue [10]. 

Other studies also showed cystatin C overexpression reduced human fibrosarcoma lung 

metastasis and cystatin A overexpressing esophageal squamous carcinoma cells reduced 

tumor weight, growth, and lung metastasis [7, 11]. Tumor-associated cells that are 

recruited to the tumor site also have increased protease expression and activity 
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contributing to the overabundant amount of cathepsins compared to cystatins in cancer 

[5, 59, 60]. While pharmaceutical companies have focused on developing cathepsins K 

inhibitors for bone related diseases in which it is involved such as osteoporosis, these 

inhibitors are now being used in trials for the treatment of bone metastasis [13, 15-17].  

Recently, more evidence suggests that some proteases can have tumor-promoting or 

tumor-suppressing roles depending on the cell type the protease is expressed in, and thus, 

broad spectrum inhibitors might reduce cathepsin activity from tumor-suppressing 

proteases [61]. It has also been reported that the expression profiles of active cathepsins 

varies in breast cancer tissue. While the amount of cathepsin K and L was upregulated in 

breast cancer tissue and peaked at stage II, active cathepsin S amounts remained 

comparable to that detected in the normal tissue regardless of cancer stage [9]. In 

addition, Kopitz et al showed that cathepsin B expression correlated with lung metastasis, 

while cathepsin L expression did not [7]. All of this highlights the differential regulation 

of each cathepsin, and the need to understand how the amount of each cathepsin might 

change during the various cancer stages.  

2.3  Current Cancer Therapies and Cathepsin Inhibitors 

The type of breast cancer treatment option selected after diagnosis depends on the tumor 

extent and cancer stage. Lumpectomy or mastectomy surgical procedures are used for 

local treatment and include excision of the tumor or breast tissue, respectively [62]. 

Lumpectomy treatment, also known as breast-conserving surgery, has similar rates of 

recurrences and deaths compared to radical mastectomy [63]. Depending on the extent of 

invasion, axillary lymph node dissection may also be conducted. Prophylactic and 

bilateral mastectomy are other intervention methods, and the rates of these treatment 
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options have increased since 1998 [64, 65]. Although, more studies have to be conducted 

to determine the long-term benefits of prophylactic and bilateral mastectomy treatments 

[65-67]. These surgical procedures can be followed with whole-breast or accelerated 

partial breast irradiation radiation therapy to reduce the risk of recurrence [68-70]. 

Neoadjuvant or adjuvant chemotherapy regimens can also be used with lumpectomy or 

mastectomy. Neoadjuvant chemotherapy which is administered before surgery, has been 

shown to be associated with a 16.6% decrease in mastectomy rate, when compared to 

adjuvant chemotherapy, which is administered post-surgery [71]. To provide the most 

effective treatments, combination therapies are usually used. A clinical trial in patients 

with HER2-overexpressing tumors demonstrated that chemotherapy plus trastuzumab, an 

antibody based competitive antagonist of the HER2 receptor, and lapatinib, a small 

molecule inhibitor of the HER2 receptor, had a 51.3% rate of pathological complete 

response (pCR), which is associated with good prognosis. Chemotherapy plus either 

lapatinib or trastuzumab had lower pCR rates: 29.5% with trastuzumab; and 24.7% with 

lapatinib [71]. Although effective, these systemic treatments often have severe adverse 

side effects associated with them that can lower the quality of life. 

There are no current cancer therapies utilizing cathepsin inhibitors, but clinical trials 

of cathepsin inhibitors have been conducted. Odanacatib is a selective cathepsin K 

inhibitor and is currently in phase III. This drug has been seen to increase bone mineral 

density and reduce the amount of bone fractures in subjects and could be used for 

metastatic bone treatment. Though the phase III clinical trial was terminated early due to 

an external data monitoring committee recommendation after 158 out of 16,071 

participants had an osteoporotic hip fracture incident, it was indicated that the subjects 
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who were administered Odanacatib had better benefit/risk profiles compared to the 

placebo group [15-17]. 

2.4  Properties of Cysteine Cathepsins 

Cathepsins K, L, S, and V are members of the lysosomal cysteine cathepsin family 

belonging to the papain family of peptidases and share 60% sequence homology [4, 72]. 

Their overexpression in disease states has resulted in implications in a number of 

pathological roles. 

Human macrophages use cathepsin S for major histocompatibility complex (MHC) and 

antigen processing, but in disease, it is involved in atherosclerosis [2, 73-75], emphysema 

[75], abdominal aortic aneurysms [75-77], arthritis [78], and other diseases associated 

with elastinolytic remodeling [79]. Even though cathepsins normally have optimal 

activity at acidic pH, cathepsin S is capable of maintaining its potent elastase activity 

even at neutral pH [75, 80]. 

Similar to cathepsin S, cathepsin K also has strong elastase activity, which diminishes at 

neutral pH [75].  

Additionally, cathepsin K is the most potent mammalian collagenase and is critical in 

bone resorption [81]. It was shown to cleave collagen from cortical bone more effectively 

than that of MMP-9, -1, and -13 due to the additional intrahelical and telopeptide 

cleavage while other mammalian collagenases can only cleave at one site or the other 

[81]. Cathepsin K is also upregulated in breast and prostate cancer [82, 83]and is 

involved in cardiovascular disease, osteoporosis, and arthritis [3, 73, 84, 85]. 

Cathepsin V is overexpressed in colon and breast carcinomas [82, 86], although it 

was first identified in the human thymus, testis, and macrophages[87]. With elastolytic 



www.manaraa.com

 12 

activity higher than cathepsins K and S, and pancreatic and leukocyte elastases by two to 

eight fold, cathepsin V is the most potent mammalian elastase. Human cathepsin V has an 

80% homologous sequence with human cathepsin L [4, 88], and human cathepsin V, and 

not human cathepsin L was shown to be orthologous to mouse cathepsin L [89, 90]. 

Detection and distinction of individual active cathepsin by current and traditional 

methods has been difficult due to sequence homology of the cathepsins, instability of the 

mature form at neutral pH, and substrate promiscuity. Fluorogenic substrates and active 

site labeling probes have been developed and have improved sensitivity [91-94], but 

structural similarities between family members still impede desired specificity when used 

with cells. 

2.5  Cellular Activation and Trafficking of Cathepsins 

Initially, cathepsins were identified in lysosomes in which lysosomal cargo is degraded. It 

was originally thought that this was the only subcellular location in which cathepsins 

were located [75, 95]. Now it is known that cathepsins are also secreted by cells such as 

osteoclasts, macrophages, and tumor cells [96-99]. 

Cathepsins have also been implicated in apoptotic pathways due to their release into 

the cytoplasmic space [100-102]. Due to the numerous locations of cathepsins, cathepsins 

are tightly regulated using pro-peptides, endogenous inhibitors, pH, and glycosylation to 

prevent off-target cleavage of proteins [3, 12, 80, 103]. Cathepsins are synthesized as 

zymogens that are inactive due to a pro-peptide piece that has to be proteolytically 

cleaved in order to become active [80, 103, 104]. This activation can occur due to 

autoactivation or activation within a family. Cystatins, the endogenous cathepsin 

inhibitors, bind to the active site of the cathepsins blocking the active site and acting as a 
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competitor for other substrates. The type 1 cystatins, also known as stefins, inhibit 

cytosolic cathepsins, while the type 2 cystatins are secreted and inhibit secreted 

cathepsins [12, 105, 106].  

Inactive cathepsins were thought to be trafficked in secretory vesicles while active 

cathepsins are trafficked in endo-lysosomal vesicles, both of which can be targeted for 

secretion [107]. Albeit, an active form of cathepsin L was recently reported to be secreted 

via secretory vesicles not associated with lysosomal exocytosis pathways [98]. 

Cathepsins are also trafficked to other subcellular locations including the cytosol and the 

nucleus, which contains truncated forms of cathepsin L [108, 109]. When in the nucleus, 

cathepsin L is suggested to cleave the CCAAT-displacement protein/cut homeobox 

transcription factor [108]. The targeting of these cysteine proteases to specific locations is 

dependent on glycosylation in the Golgi apparatus regulates [110]. Overexpression of 

cathepsins overloads the Golgi and lysosomal targeting pathway, leading to improper 

glycosylation and subsequent mis-targeting of the enzymes, such that they are secreted 

instead of being sorted to lysosomes to other cellular compartments [107, 111, 112], 

which occurs during pathological overexpression of cathepsins. 

2.6  Proteolytic Networks and Compensatory Mechanisms 

Others have shown compensatory mechanisms within the cathepsin proteolytic network. 

A recent report showed that deletion of multiple cathepsins, in this case cathepsins S and 

B, causes an upregulation of cathepsin Z in a tumor mice model [113]. Murine cathepsin 

L mRNA was upregulated in a cathepsin K knockout mouse model; active cathepsin X 

elevation was detected in a cathepsin B knockout mouse model; increases in cathepsin D, 

Z, and B proteins occurred in a murine cathepsin L knockout mouse; and elevated 
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cathepsin Z protein was observed in a cathepsin B knockout mouse model [60, 114, 115]. 

Even though human cathepsin V, not human cathepsin L, is orthologous to mouse 

cathepsin L, human cathepsin V has an 80% homologous sequence with human cathepsin 

L. All of these reports of compensatory feedback responses in knockout mouse models 

highlights the harm in studying one protease without consideration of the entire 

proteolytic complex and points to a need to understand the effects of cathepsin 

downregulation or inhibition. 
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CHAPTER 3 

Manipulating substrate and pH in zymography protocols selectively 

distinguishes cathepsins K, L, S, and V activity in cells and tissues1 

 

3.1 Introduction 

Proper measurement of changes in levels of cathepsin activity in disease states would be 

beneficial to understand the roles of cathepsins and to develop therapies. The sequence 

homology of cathepsins K, L, S, and V, instability of the mature form at neutral pH, and 

substrate promiscuity all confuse detection and distinction of individual cathepsin 

activities by current and traditional methods. Fluorogenic substrates and active site 

labeling probes have been used to advantage and improved sensitivity [91-94], but 

structural similarities between family members still impede desired specificity when used 

with cells or mixtures of different cathepsin family members. 

Most of these cathepsins have been defined with cell- or tissue-specific expression 

under normal physiology [72, 75, 90, 116-118], but in disease states are turned on by a 

number of other cell types. In doing so, post-translational processing is altered. 

Glycosylation that normally occurs to target cathepsins for sorting to lysosomes [111], 

propeptide cleavage to activate the enzymes [119, 120], and other changes affect enzyme 

structure and ultimately their electrophoretic migration distance in a non-reduced 

preparation which relies solely on SDS to add negative charge and partially denature the  

 

1Used with permission from: Wilder CL, Park KY, Keegan PM, Platt MO. (2011). Manipulating 
substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V 
activity in cells and tissues. Arch Biochem Biophys. Dec 1;516(1):52-7. doi: 
10.1016/j.abb.2011.09.009. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wilder%20CL%5BAuthor%5D&cauthor=true&cauthor_uid=21982919
http://www.ncbi.nlm.nih.gov/pubmed/?term=Park%20KY%5BAuthor%5D&cauthor=true&cauthor_uid=21982919
http://www.ncbi.nlm.nih.gov/pubmed/?term=Keegan%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=21982919
http://www.ncbi.nlm.nih.gov/pubmed/?term=Platt%20MO%5BAuthor%5D&cauthor=true&cauthor_uid=21982919
http://groups.bme.gatech.edu/groups/platt/PubWilder-ABB-2012.pdf
http://groups.bme.gatech.edu/groups/platt/PubWilder-ABB-2012.pdf
http://groups.bme.gatech.edu/groups/platt/PubWilder-ABB-2012.pdf
http://www.ncbi.nlm.nih.gov/pubmed/21982919
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protein. Additionally, cathepsins have disulfide bonds that may differ between family 

members [3, 121].   

 

Among the four, they share 60% sequence homology [75, 89, 90] but each has unique 

properties and different homeostatic functions. Cathepsin S is a potent elastase notable 

for its activity at neutral pH [75]. Cathepsin K serves a critical role in bone resorption and 

is the most potent mammalian collagenase described [81]. Cathepsin V was first 

identified in the human thymus, testis, and macrophages[87] and has been identified 

recently as the most potent mammalian elastase with elastolytic activity higher than 

cathepsins K and S. 

Here a method of zymography, or substrate gel electrophoresis, to detect the activity 

of cathepsins K, L, S, and V from one cell extract/preparation is detailed. Zymography is 

a method whereby a substrate is polymerized into a polyacrylamide gel such that, upon 

activation, the enzymes hydrolyze the embedded substrate in situ, and proteolytic activity 

can be visualized as cleared bands on a Coomassie stained background. This technique 

has many benefits: 1) it does not require antibodies making it relatively inexpensive and 

species-independent, 2) separation of proteins by molecular mass and non-reducing 

electrophoretic migration visually confirm enzyme identity, 3) densitometry can be used 

for quantitative analysis, and 4) pH change can confirm specific cathepsin activity. 

Cathepsin L zymography protocols have been described [99, 122, 123], and in a recent 

study, we reported that cathepsin K activity is detectable at femtomole quantities through 

gelatin zymography [124]. This study is the first report of a zymography protocol for 

cathepsin S and cathepsin V, and slight modifications that allow for specific 

determination and quantification of cathepsins K, S, L, and V in cell and tissue extracts is 
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further described. Then this method is applied to monocyte derived macrophages and 

osteoclasts, endothelial cells exposed to the inflammatory cytokine TNFα, and normal 

and cancerous human lung tissue to demonstrate its utility in detecting cathepsins in 

health and disease states.  

  

3.2  Materials and Methods 

3.2.1 Materials 

Recombinant human cathepsin K isolated from insect cells (Enzo); recombinant human 

cathepsin K from E. coli (EMD Bioscience); human cathepsin L isolated from human 

liver (Enzo); recombinant human cathepsin S from E. coli (EMD Biosciences); 

recombinant human cathepsin S from insect cells (Enzo); recombinant human cathepsin 

V from NSO cells (Enzo); Cathepsin V with mutated glycosylation site was expressed in 

P. pastoris and was a kind gift from Dieter Brömme; E-64 protease inhibitor (EMD 

Biosciences); Murine macrophage RAW 264.7 cell line (ATCC); Human breast and lung 

tissue lysates (Protein Biotechnologies). Tumor necrosis factor alpha (TNFα; Invitrogen), 

Macrophage colony stimulating factor (M-CSF; Peprotech), and receptor activator of 

nuclear factor kappa B ligand (RANKL). 

 

3.2.2 Cell Culture 

Murine macrophage RAW 264.7 cells were cultured in Dulbecco's Modified Eagle 

Medium (Lonza) containing 10% fetal bovine serum (FBS), 1% L-glutamine, and 1% 

penicillin/streptomycin. Human aortic endothelial cells (ECs) (Lonza) were cultured in 

MCDB medium 131 (Mediatech) containing 10% fetal bovine serum (FBS), 1% L-
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glutamine, 1% penicillin/streptomycin, and 1% endothelial cell growth serum (ECGS). 

ECs were stimulated with or without 10 ng/mL TNFα (Invitrogen) for twenty hours.  

Cells were maintained with 5% CO2 at 37˚C. 

3.2.3 Primary Monocyte isolation 

This study was approved by an institutional review board committee and the subjects 

gave informed consent. Whole blood samples obtained from consenting donors were 

centrifuged against a Ficoll-Paque density gradient (density: 1.077g/mL; GE Healthcare) 

for 30 minutes at 900g to separate the buffy coat layer. After centrifugation, peripheral 

blood mononuclear cells (PBMCs) were aspirated, washed in PBS, and pelleted by 

centrifugation for 10 minutes. The isolated cells were then washed with a red blood cell 

(RBC) lysis buffer (0.83% ammonium chloride, 0.1% potassium bicarbonate, and 

0.0037% EDTA) for seven minutes to remove any contaminating RBCs. The PBMCs 

were then washed in sterile PBS, and cell number and viability were determined using a 

Vi-Cell (Beckman Coulter). Monocytes were isolated by adhesion, and then 

differentiated into either macrophages with 30ng/µl M-CSF in RPMI or osteoclasts using 

30 ng/µl M-CSF and 30 ng/µl RANKL in alpha-MEM for 14 days. Lysates were 

collected and equal amounts of protein were loaded for cathepsin zymography.  

 

3.2.4 Cathepsin zymography 

This protocol is based on our previously published protocol [124]. All recombinant 

cathepsins are from human sequences. Procathepsins K and V from NSO cells (Enzo) 

were activated using 100 mM sodium acetate buffer, pH 3.9, 10 mM DTT, and 5 mM 

EDTA for 40 minutes at room temperature. All others were purchased in mature forms. 
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Cells and tissue were extracted in lysis buffer (20 nM Tris-HCl at pH 7.5, 5 mM EGTA, 

150 mM NaCl, 20 mM β-glycerol-phosphate, 10 mM NaF, 1 mM sodium orthovanadate, 

1% Triton X-100, 0.1% Tween-20) with 0.1 mM leupeptin freshly added to stabilize 

enzymes during electrophoresis and lysates were collected and cleared by centrifugation. 

Protein concentration was determined by micro BCA assay (Pierce). 5X non-reducing 

loading buffer (0.05% bromophenol blue, 10% SDS, 1.5M Tris, 50% glycerol) was added 

to all samples prior to loading. Equal amounts of cell or tissue protein were resolved by 

12.5% SDS-polyacrylamide gels containing 0.2% gelatin at 4°C. Gels were removed and 

enzymes renatured in 65 mM Tris buffer, pH 7.4 with 20% glycerol for 3 washes, 10 

minutes each. Gels were then incubated in activity buffer (0.1 M sodium phosphate 

buffer, pH 6.0, 1 mM EDTA, and 2 mM DTT freshly added) for 30 minutes at room 

temperature. For different pH conditions, 0.1 M sodium acetate buffers of pH 4, and 

sodium phosphate buffers of pH 6, 7, and 8 were used. Then this activity buffer was 

exchanged for fresh activity buffer of the same pH and incubated for 18-24 hours 

(overnight) incubation at 37˚C. The gels were rinsed once with deionized water and 

incubated for one hour in Coomassie stain (10% acetic acid, 25% isopropanol, 4.5% 

Coomassie Blue) followed by destaining (10% isopropanol and 10% acetic acid). Gels 

were imaged using an ImageQuant LAS 4000. For elastin zymography, 0.2% soluble 

elastin (Elastin products) was polymerized in the polyacrylamide gels in place of gelatin 

substrate.  
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3.2.5 Western blots  

SDS-PAGE was performed as described above without a gelatin or elastin substrate 

polymerized. Protein was transferred to a nitrocellulose membrane (Bio-Rad) and probed 

with monoclonal anti-human cathepsin K clone 182-12G5 (Millipore), anti-human 

cathepsin S and V antibodies (R&D Biosystems), or anti-mouse cathepsin L antibody 

(R&D Biosystems). Secondary donkey anti-mouse or anti-goat antibodies tagged with an 

infrared fluorophore (Rockland) were used to image protein with a Li-Cor Odyssey 

scanner. 

 

3.3 Results 

3.3.1 Mature cathepsins K, L, S, and V activities can be detected by 
gelatin zymography 

 

Recombinant cathepsins K and S from E. coli, cathepsin V with mutated glycosylation 

sites purified from P. pastoris, and cathepsin L isolated from human liver were loaded for 

zymography. Cathepsins K, S, and V are the nonglycosylated forms of the enzymes and 

cathepsin L contains both forms. All were active in the cathepsin zymography with bands 

at ~29 kDa for cathepsin K, ~21 kDa for cathepsin L, ~25 kDa for cathepsin S, and ~23 

kDa for cathepsin V (Figure 1A). To confirm the identity of the cathepsin bands, aliquots 

were loaded for Western blot, probed with their respective anti-cathepsin antibodies (Fig 

3.1C). Cathepsins L and V had multiple immunodetectable bands, but only one band was 

zymographically active under these conditions (open arrows).  

To determine if glycosylation affects electrophoretic migration, recombinant 

cathepsins K, S, L, and V from eukaryotic expression systems were loaded for cathepsin 
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zymography and a representative zymogram is shown in figure 3.1B. Cathepsin S 

maintained similar electrophoretic migration distances as that seen in Fig 1A, but 

cathepsin K migration distance shifted from ~27 kDa to ~50 kDa, and cathepsin V shifted 

from ~23 kDa to ~37 kDa (Fig 3.1B). All four glycosylated enzymes were loaded into the 

same well and similar migration distances were seen indicating that interaction between 

cathepsins in solution, as would occur in cellular extracts, does not alter their individual 

migration. Again, Western blotting confirmed the identity of the zymographically active 

bands and the shifts in electrophoretic migration distances (Fig 3.1C). The open arrow 

indicates the zymographically active band of cathepsin V and cathepsin L on each 

respective blot. For all subsequent experiments, cathepsins from eukaryotic expression 

systems were used. 

 

 

 

Figure 3.1.  Mature cathepsins K, L, S, and V activities can be detected by gelatin 

zymography.  A) Recombinant cathepsins K, S, and V (1, 20, and 50 ng) from E. coli and 

cathepsin L (50 ng) isolated from human liver were loaded for cathepsin gelatin 

zymography and incubated overnight in acetate buffer, pH 6.  The zymogram reveals 

zymographically active bands at different electrophoretic migration distances.  B) Mature, 
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recombinant cathepsins K, S, and V (10 ng) from eukaryotic expression systems and 

cathepsin L (50 ng) isolated from human liver were loaded separately and all in one lane 

(where indicated) for gelatin zymography assayed at pH 6.  C) Western blot analysis of 50 

ng of recombinant glycosylated cathepsin K, L, S, and V from eukaryotic expression 

systems also were loaded for non-reduced Western blotting. 

 

To test this assay on cellular extracts, we isolated monocytes from peripheral blood 

mononuclear cells (PBMCs) and differentiated them into macrophages and osteoclasts, 

two cell types that produce cathepsins, and osteoclasts specifically produce large amounts 

of cathepsin K under normal conditions [97, 116, 125]. Monocyte derived macrophages 

and osteoclasts were lysed and duplicates of 5 µg of protein from each were loaded for 

gelatin zymography. 37 kDa, 25 kDa, and 20 kDa bands were visible in both 

macrophages and osteoclasts, with the 25 and 20 kDa bands being consistent with 

cathepsins S and L, from the isolated enzyme studies, respectively (Fig 3.2A). The 35 

kDa band was assumed to be cathepsin V to be consistent with Fig 1B, but this band was 

brighter in osteoclasts and another band appeared just above it, around 37 kDa in the 

osteoclast lysates. 

It is known that osteoclasts express cathepsin K specifically for bone resorption 

which supported the hypothesis that the upper band was osteoclast expression of 

cathepsin K. This was a different electrophoretic migration distance than that of the 

recombinant enzymes. To confirm this band was indeed cathepsin K, lysates from the 

monocyte derived macrophages and monocyte derived osteoclasts were loaded for 

reduced, denatured Western blotting, by adding β-mercaptoethanol to break disulfide 

bonds and boiling to fully denature and linearize the proteins. This differs from the 

zymography preparation, which maintains the disulfide bonds for proper refolding and 

renaturation, but does not fully linearize the peptide strand possibly resulting with a 
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larger hydrodynamic radius which can affect their migration through the polyacrylamide 

gel during electrophoresis. Reducing Western blots probed with antibodies against human 

cathepsin K or V verified the identity of the increased cathepsin K in the osteoclasts by 

the visible detection of the pro- and mature forms of cathepsin K only in the osteoclast 

lysates where the upper 37 kDa band appeared. Both macrophages and osteoclasts had 

detectable levels of pro- and mature cathepsin V by Western blot, but a greater amount 

was present in osteoclasts, consistent with the brighter 37 kDa band in the zymography 

(Fig 3.2B). 

 

 

 

 

 

 

Figure 3.2.  Mature cathepsins K, L, S, and V are zymographically active and migrate 

at distinct electrophoretic distances A) Monocyte-derived macrophages and monocyte-

derived osteoclasts were lysed and equal amounts of protein were loaded for cathepsin 

zymography and B) reduced, fully denaturing Western blotting for cathepsins K and V.  

Procathepsin (pro) bands are at ~37 kDa and mature (mat) cathepsin bands are at ~27 kDa.  

Increased cathepsins K and V were detected in the osteoclasts compared to the 

macrophages. 
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3.3.2 Cathepsin selectivity through pH and substrate modifications. 

Given the unexpected location of the cathepsin K band in monocyte derived osteoclasts 

and its close proximity to a brighter cathepsin V band, we wanted to modify the 

technique to uniquely distinguish each cathepsin. This would be useful for investigating 

new cell types or new disease conditions that might alter cathepsin activation or 

glycosylation. A new approach had to be employed to take advantage of unique cathepsin 

properties to enable selective distinction among cathepsins migrating at similar distances 

during the electrophoresis. A number of studies have indicated different substrate and 

pH-specific changes in proteolytic activity for different cathepsin family members [126, 

127] leading us to test the hypothesis that selectivity for cathepsin K, L, S, or V could be 

obtained by varying pH and substrate. Ten ng of cathepsins K, S, and V and 50 ng of 

cathepsin L were loaded for gelatin zymography, and 50 ng of each cathepsin were 

loaded for elastin zymography. These numbers were based on preliminary experiments to 

obtain visible bands.  Gels were incubated in assay buffer at pH 6, 7, or 8 overnight prior 

to staining with Coomassie blue and visualization of cleared bands of proteolytic activity. 

Results are shown in figure 3.3. 

Cathepsin K maintained activity on gelatin at pH 7 and 8, which contrasted 

significantly with cathepsins L and V activity (Fig 3.1B and 3.3A) which were not seen at 

pH 7 or 8 on gelatin. Distinct bands for cathepsin K and S were at different 

electrophoretic distances and therefore, distinguishable from each other. Thus, a gelatin 

zymography at pH 7 would select for cathepsin K over V. Cathepsin S activity was stable 

under all pH conditions tested on both gelatin and elastin. With elastin zymography, 

cathepsins K and V activities were much weaker than that of cathepsin S (Figure 3.3B) 

with a drastic reduction in their cleared band signals as pH increased such that at pH 7, 
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cathepsins K and V retained little to no activity, and the assay conditions selected for 

cathepsin S (Fig 3.3B).  

 

 

 

 

Figure 3.3. Cathepsin zymography selectivity can be obtained through pH and 

substrate modifications. A) Recombinant, glycosylated human cathepsins K, S, and V 

(10 ng) and cathepsin L (50 ng) were loaded separately and all in one lane for cathepsin 

zymography.  The samples were incubated overnight in assay buffer, pH 7 or 8 prior to 

Coomassie staining.  B) 50 ng of human recombinant cathepsins K, S, and V were loaded 

for elastin zymography and incubated in pH 6, 7, or 8 assay buffers overnight.  There was 

less cathepsin L and V signal at pH 7 and 8 and only cathepsin S maintained its activity in 

elastin zymography. 

 

 

3.3.3 Selectivity for cathepsin V occurs at pH 4 after loss of 
cathepsin K band of activity. 

Unique conditions for cathepsin S had been determined, and cathepsin K had detectable 

proteolytic activity on gelatin at pH 7 where cathepsins L and V activity was attenuated 
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(Figure 3.3A), but conditions selective for cathepsin V had not yet been determined. An 

initial screen of RAW macrophage lysate displayed a strong band of activity at pH 4 that 

was neither cathepsin K nor S (data not shown), that we hypothesized was due to 

cathepsin V-like enzyme activity in macrophages. To test this, we loaded a gelatin 

zymogram with 10 ng of mature cathepsin K, S, and V, and 50 ng of cathepsin L, then 

incubated it in assay buffer, pH 4 (Figure 3.4A). Cathepsin V band was detectable at ~37 

kDa but the cathepsin K band was no longer active. Interestingly, multiple active bands 

of cathepsin L became visible at ~35 kDa, ~25 kDa, and ~20 kDa after incubation at pH 

4, different from just the 20 kDa band detected at pH 6 (Fig 3.1). Next, 5 µg of 

macrophage lysate and 50 ng recombinant cathepsin V were loaded for zymography and 

incubated in assay buffer, pH 6 and pH 4, prior to staining to confirm this band in RAW 

macrophages. Cathepsin V activity appeared at same distance as the cleared band of 

question in macrophage lysate (Figure 3.4B).  

Raw 264.7 cells are a mouse macrophage cell line, and murine cathepsin L is the 

homolog to human cathepsin V [128]. To confirm the identity of this band as murine 

cathepsin L, Western blotting was performed with 50 µg of macrophage lysate and 

probed with either an anti- human cathepsin V antibody or an anti-mouse cathepsin L 

antibody; mature, recombinant human cathepsin V was loaded as a positive control. 

Human cathepsin V and the immunodetected band in the macrophage lysate migrated 

similarly to ~37 kDa (Figure 3.4C) corroborating the active band in macrophages was 

homologous to cathepsin V. The blot probed with anti-mouse cathepsin L detected the 

proform and the mature forms of mouse cathepsin L in the RAW264.7 macrophages. 
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Specificity of mouse cathepsin L antibody is shown by its inability to detect recombinant 

cathepsin V (Fig 3.4C). 

 

 

 

Figure 3.4.  Zymography selectivity for cathepsin V occurs at pH 4.  A)  10 ng of 

recombinant human cathepsins K, S, and V and 50 ng cathepsin L isolated from human 

liver were loaded for gelatin zymography and incubated overnight in assay buffer, pH 4.  

B) Gelatin zymography performed with 5 µg of macrophage extract and 50 ng of 

recombinant cathepsin V were assayed at pH 4.  The active bands at pH 4 in the RAW 

macrophage extract have similar electrophoretic distance as that of mature, human 

cathepsin V.  C) Western blot using anti-human cathepsin V antibodies and anti-mouse 

cathepsin L antibodies were used on 50 µg RAW 264.7 lysate and 50 ng of recombinant 

cathepsin V to confirm presence of each in the cell lysates. 

 

 

3.3.4 Selective zymography at pH 4 distinguishes the activity of 
cathepsin K from V in human cells and tissue from healthy and 
diseased conditions.  

Our next goal was to apply this technology to natural changes in cells under healthy and 

diseased states and proper distinction of cathepsin K from V. Endothelial cells express 

cathepsin K at extremely low basal levels, but increase its expression under disturbed 

flow, inflammatory conditions, and atherosclerosis [84, 85]. Human aortic endothelial 

cells (ECs) were grown to confluence and treated with or without 10 ng/mL tumor 
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necrosis factor alpha (TNFα) for 20 hours, after which lysates were collected for gelatin 

zymography. Stimulation of ECs with TNFα induced the 37 kDa cathepsin K band with 

detectable bands of cathepsins V and L for gelatin zymography at pH 6 (Fig 3.5A). To 

select for cathepsin V, zymograms were incubated at pH 4, which diminished the 37 kDa 

band, but maintained detectable cathepsin V and cathepsin L bands of activity (Fig 3.5B). 

Other ECs were transfected with CMVSport6 plasmid containing cathepsin K under the 

CMV promoter to drive constitutive overexpression and specifically corroborate the 

identity of the cathepsin K band. Lysates were collected 24 and 48 hours after 

transfection, and equal protein amounts were loaded for zymography. In these cells, the 

37 kDa band appeared, but did not in the control cells, corroborating its identity as 

cathepsin K.  

To test the selective cathepsin V zymography on tissue, human lung tissue from 

normal and tumor specimens of different cancer stages (indicated by Roman numerals) 

were obtained and loaded for cathepsin gelatin zymography. Tumor specimens (II – IV) 

had greater cathepsin activity than the normal specimens and bands appeared at 37, 35, 

25, and 21 kDa. To confirm the top band was cathepsin K and the 35 kDa band was 

cathepsin V, aliquots of the specimens were loaded for selective zymography, incubated 

at pH 4. No detectable active cathepsin bands in the presence of E-64 indicated that bands 

are products of active cysteine proteases (data not shown). The 35 kDa band of interest 

remained in the lung specimens above the intensity of the other cathepsin signals 

confirming it as cathepsin V (Figure 3.5D), cathepsin K (37 kDa) and S (25 kDa) bands 

were diminished, but lower molecular weight bands remained at the cathepsin L 

electrophoretic migration distance (~21 kDa).  
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Figure 3.5. Selective zymography at pH 4 distinguishes the activity of cathepsin K 

from V in human cells and tissue from healthy and diseased conditions.   A) ECs were 

cultured in the presence or absence of 10ng/mL TNF for 24 hours prior to lysis and 

loading for cathepsin zymography. Gels were incubated at pH 6 or pH 4 to select for 

cathepsin V over cathepsin K.  Representative zymogram is shown.  B) ECs were 

transfected with cathepsin K gene on pCMVSport6 and cultured for 24h or 48h to 

overexpress cathepsin K. Zymogram at pH 6 is shown    C) Lung tissue specimens from 

normal and from different stages of cancer progression were homogenized, and 10 µg of 

soluble total protein were loaded for gelatin zymography and incubated overnight in assay 

buffer, pH 6 and D) pH 4 assay buffers.  The bands of cathepsins K and S disappear from 

the gels leaving only cathepsins V (~33 kDa / 21 kDa) and L (21 kDa) bands. 

 

 

3.4  Discussion 

This study shows that cathepsins K, L, S, and V can all be detected by zymography in 

one cell lysate or tissue preparation under healthy and diseased states. Cathepsin K, L, S, 

and V activities were detected and distinguished in human endothelial cells, human 

monocyte derived macrophages and osteoclasts, murine macrophages, and normal and 
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cancerous human lung tissue. Employing this assay with monocyte derived macrophages 

and monocyte derived osteoclasts, we were able to identify increased cathepsin V in 

osteoclasts compared to macrophages, and this is the first report to do so. Also, this assay 

was able to detect cathepsin V activity in human lung cancer in the absence of the pro-

forms and other immunolabeled bands. It is not surprising that cathepsins V and L both 

have activity at pH 4, as they share 80% sequence homology, which may account for 

their renaturing ability and stability at the lower pH.  

The ability to detect specific cathepsin activity in a complex cell or tissue lysate is 

critical in identifying the regulation of these proteases in healthy and diseased states; 

overdosing of cathepsin inhibitors due to improper quantification can block homeostatic 

functions of these enzymes and induce serious side effects [129]. We have also shown 

how different migration distances must be taken into account when interpreting results 

obtained from diseased states; although differential glycosylation exist for these enzymes, 

they seem to be active in zymography as shown with the recombinant cathepsins from 

prokaryotic and eukaryotic sources. It must also be considered that since the recombinant 

enzymes are from different sources, there is a possibility of different post-translational 

modifications. The apparent molecular weight and electrophoretic migration distances of 

cathepsins are different, partially due to glycosylation and secretion mechanisms. As an 

example, cathepsin V has been shown to have two putative N-glycosylation sites on the 

mature enzyme and when these sugars are cleaved the migration of the enzyme is altered 

by 4-7 kDa [90]. Improper glycosylation mistargets these cathepsins to other cellular 

compartments or for secretion [107, 111, 112], which occurs during pathological 

overexpression of cathepsins. 
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Cathepsin zymography has multiple advantages over other methods. Individual 

cathepsin activity can be visually confirmed by band location and quantified with 

densitometry analysis. This is an advantage over fluorescent reporter substrate assays 

that, when cleaved, release aminomethylcoumarin or other quenched fluorescent motifs. 

Enzyme concentrations, reporter substrate concentrations, and cross-reactivity with 

reporter substrates, all add confusion to accurate interpretation of the total fluorescent 

signal. Serine proteases, matrix metalloproteinases, and other enzyme families also 

contribute to hydrolysis of these reporter substrates confounding proteolytic readout and 

attribution of that activity to a particular enzyme. 

The zymography method described here overcomes these challenges by a) incubating 

gels in acidic conditions to drastically reduce activity of MMPs and serine proteases, b) 

allowing the addition of inhibitors that block enzymatic activity of other proteases, c) 

selecting for enzymes capable of thermodynamically favorable renaturation after non-

reducing, partial denaturation by SDS and d) exploitation of unique enzyme structural 

properties (size, glycosylation, disulfide bridge number and locations) that impart distinct 

electrophoretic migration distances that may not be seen in reduced, fully linearized SDS-

PAGE and immunoblotting. As an added benefit, this assay does not require antibodies 

which expands its use to different species as cathepsin structures are fairly well 

conserved; here we have used mouse and human specimens. This also reduces costs 

compared to immunobased methods such as ELISA, Western blotting, and 

immunohistochemistry, and remove concerns of nonspecific antibody binding and pro-

cathepsin detection interference. 
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Limits of detection for each enzyme at each pH and substrate will need to be 

determined. We have already determined that cathepsin K can be detected as low as 0.1 

ng at pH 6 [124] and 0.8 ng at pH 7 (data not shown), but cathepsins L, S, and V limits 

are higher and required a greater amount of enzyme to elicit a detectable signal after 

Coomassie staining (Fig 1). Fair comparisons of cathepsin activity of different samples 

loaded in the same gel can be made, but absolute standards can also be loaded to fit the 

quantified densitometry signal and calculate an actual value to compare across different 

gels [124, 130].   

 

3.5  Conclusions 

Many types of cancers and tissue destructive diseases are caused by altered cathepsin 

activity and regulation. Understanding and detecting this cathepsin mediated tissue 

remodeling is important not only for basic science research, but also for clinical purposes. 

Broad application of this cathepsin K, L, S, and V multiplex zymography will provide a 

medium throughput and inexpensive protocol with widespread utility. Tools that add 

greater selectivity such as the zymography protocols and modifications presented here, 

that enable proper cathepsin identification, and quantification of those signals will assist 

appropriate pharmaceutical inhibitor dosing and the determination of pathological 

functions due to upregulated cathepsins for future investigations and, hopefully, answer 

previously unsolved questions of proteolytic activity.  
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CHAPTER 4 

Broad spectrum cathepsin inhibitors E-64 and cystatin C differentially 

regulate cathepsin S and L due to differences in localization 

 

4.1  Introduction 

Cathepsin protease inhibitor therapies targeting active cathepsins have been developed, 

and although these therapies have been efficacious in inhibiting cathepsins and stopping 

the progression of the disease, only odanacatib, the selective cathepsin K inhibitor, has 

been found to be efficacious in a phase III trial [13, 15, 17]. Even though some of the 

cathepsin inhibitors are highly selective for specific isolated recombinant cathepsins, off 

target effects to other cathepsin species are increased when the inhibitors enter into the 

intracellular environment [24, 131, 132]. In addition, data recently published 

demonstrated that treatment with the cathepsin S inhibitor LY3000328 resulted in 

elevated cathepsin S activity and protein mass in the plasma of healthy subjects after 

treatment [133]. Both the off target effects and the upregulation of active cathepsins due 

to cathepsin inhibitors highlight the need to study cellular feedback mechanisms that 

occur with cysteine cathepsin inhibition in order to assist with proper therapeutic dosing. 

Cathepsins play important roles in matrix turnover, mesenchymal stem cell 

differentiation, and apoptosis [96, 102, 104, 134-137], but have also been shown to assist 

cancer invasion due to their secretion and degradation of extracellular matrix (ECM) 

proteins in the surrounding environment [6, 137, 138], and even play roles intracellularly. 

Beyond just degradation of internalized ECM proteins and fragments [5, 137, 139], there 

are other intracellular functions. Intracellular cathepsins activate other procathepsins into 
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the mature, active form by proteolytic cleavage of the pro-peptide [140].  Cathepsins L 

and S shed surface bound proteins from cancer cells reducing Ras GTPase intracellular 

signaling in breast cancer cells, pancreatic cancer cells, glioblastoma cells, and melanoma 

cells [141]. Cathepsin S transcriptionally regulates CCL2, a pro-inflammatory chemokine 

which promotes metastasis [142], via cleavage of the intracellular domain of the surface 

membrane protein CD74 [143]. Cathepsins have also been implicated in apoptotic 

pathways due to their release into the cytoplasmic space [100-102]. Cathepsin S 

expression is specific to tissue and cell type such as epithelial cells and has been detected 

in lysosomes and the extracellular environment [107]. This is in contrast to cathepsin L 

which is ubiquitously expressed in most cells and tissues, and its cellular locations 

include lysosomes, the extracellular environment, and the nucleus [107]. When in the 

nucleus, cathepsin L is suggested to cleave the CCAAT-displacement protein/cut 

homeobox transcription factor [108].  

Cystatins are endogenous proteins that inhibit cysteine cathepsins. Cystatins are 

ubiquitously expressed and secreted by cells, although the small molecule inhibitor of 

cysteine cathepsins, E-64, is not. E-64 was originally isolated from an Aspergillus 

japonicus culture [144] but can be synthesized. The inhibitor is specific to cysteine 

proteases and forms an irreversible bond at the active thiol group in the active site of 

cysteine cathepsins. It does not have selective inhibition between proteases within the 

cysteine cathepsin family making it a broad spectrum cathepsin inhibitor [106, 145]. This 

small molecule inhibitor is not used clinically, but is useful in studying cysteine 

cathepsins in vitro because of its potency and specificity to cysteine cathepsins. While E-

64 interacts with the active thiol group forming an irreversible bond, cystatin C inhibits 
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cysteine cathepsins by physically blocking the three domains of the active site, forming a 

tight bond similar to an irreversible interaction [12, 106]. Both inhibit the members of 

cysteine protease family and cannot passively cross the plasma membrane. It has been 

shown that cystatin C can be endocytosed and accumulates in lysosomes at high 

concentrations. When intracellular, it reversibly dimerizes when in low pH environments 

and while in the endoplasmic reticulum [146-148]. The dimerized form of cystatin C is 

not secreted, but upon endocytosis dimerization occurs [147]. Since cathepsin inhibition 

cannot occur without binding of the inhibitor to the target protease, the intracellular 

location of the inhibitors is important when trying to understand how their treatment is 

affecting specific cysteine proteases. Cystatin B, also known as stefin B, is an 

endogenous cathepsin protein inhibitor that is distributed throughout the cytoplasm of 

cells, unlike cystatin C [149]. Cystatin C has lower dissociation constants for cathepsins 

L and S compared to cathepsin B, making it a more potent inhibitor for the 

aforementioned proteases [12, 150]. 

All of this has motivated this investigation of the regulation of cathepsins during 

broad spectrum cathepsin inhibition. The goal is to understand cellular compensatory 

mechanisms occurring in triple negative MDA-MB-231 breast cancer cells, which are 

known to have an aggressive phenotype [151-153], when incubated with broad spectrum 

cathepsin inhibitors E-64 or cystatin C. 
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4.2  Materials and Methods 

4.2.1 Materials 

RFP-labeled and non-labeled MDA-MB-231 breast cancer cells were obtained from Cell 

Biolabs, Inc. (San Diego, CA, USA) or American Type Culture Collection (ATCC) 

(Manassas, VA, USA), respectively. Normal breast tissue was provided by our 

collaborators at the DeKalb Medical Center (Decatur, GA, USA) and purchased from 

National Disease Research Interchange (NDRI) (Philadelphia, PA, USA). Anti-human 

cathepsin S, L, and V antibodies (R&D Biosystems), anti-actin (Santa Cruz 

Biotechnology), and secondary donkey anti-mouse or anti-goat antibodies tagged with an 

infrared fluorophore (Li-Cor) were used to detect protein with a Li-Cor Odyssey scanner. 

 

4.2.2 Cell Culture 

RFP tagged MDA-MB-231 breast cancer cells (Cell Biolabs, Inc.) were transfected with 

one of the plasmids containing full-length expression sequences of either cystatin C, 

cystatin B, or an empty vector control under control by the CMV promoters (Origene) 

using Lipofectamine 2000 (Invitrogen). The cells were then cultured in DMEM (Lonza) 

medium with 10% FBS, 1% L-glutamine, and 1% non-essential amino acids and incubated 

for 24 hours at 37°C. GFP tagged human THP-1 monocytes (ATCC) were cultured in 

RPMI with 10% FBS, 1% L-glutamine, 1% penicillin-streptomycin, and 0.05 mM 2-

mercaptoethanol. Cells were incubated with either the cysteine cathepsin broad-spectrum 

small molecule inhibitor E-64 (Calbiochem), the intracellular cysteine cathepsin inhibitor 

E-64d (Calbiochem), the protein inhibitor of cysteine cathepsins recombinant cystatin C 

(BBI Solutions), the cathepsin L inhibitor Z-FY-CHO (Calbiochem), or the broad spectrum 

MMP inhibitor GM6001 (Calbiochem). 
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4.2.3 Multiplex Cathepsin Zymography 

Tissue and cell lysates or conditioned media was collected after a specified incubation 

duration. Total protein amounts in the cell lysates were determined using the Pierce 

Micro BCA Protein Assay (Thermo Scientific) and prepared as previously described 

[124]. The conditioned media was concentrated using VivaSpin 500 concentrators 

(Sartorius Stedim Biotech GmbH) and the same amount of volume per sample was 

loaded. The cell lysates and conditioned media were assayed as previously described, but 

briefly, equal amounts of protein or volume were loaded in gelatin embedded 

polyacrylamide gels to separate the protein using SDS-PAGE techniques [154]. The gel 

was washed in renaturing buffer and assay buffer followed by staining with a Coomassie 

blue stain and destain. The gel was then imaged using an ImageQuant LAS 4000 (GE 

Healthcare Life Sciences). The bands were then quantified using ImageJ. 

 

4.2.4 Western Blots 

Tissue and cell lysates or conditioned media was collected after a specified incubation 

duration. Total protein amounts in the cell lysates were determined using the Pierce 

Micro BCA Protein Assay (Thermo Scientific). The conditioned media was concentrated 

using VivaSpin 500 concentrators (Sartorius Stedim Biotech GmbH) and the same 

amount of volume per sample was loaded. The cell lysates and conditioned media were 

assayed as previously described, but briefly, equal amounts of protein or volume were 

loaded in gelatin embedded polyacrylamide gels to separate the protein using SDS-PAGE 

techniques. Protein was transferred to a nitrocellulose membrane (Bio-Rad) and proteins 
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were then probed with primary antibodies overnight at 4°C followed by an hour 

secondary antibody incubation. 

 

4.2.5 Immunocytochemistry 

Non-tagged MDA-MB-231 breast cancer cells were incubated with or without 50µM of 

the cathepsin broad-spectrum small molecule inhibitor E-64 (Calbiochem). For the 

gelatin degradation assay, cells were also incubated with 0.05 mg/ml DQ-gelatin from 

bovine skin, fluorescein conjugate (Invitrogen) at 37°C for 24 hours. Cells were fixed 

with 4% paraformaldehyde and permeabilized with 0.1% Triton-X. After which cells 

were incubated overnight with a primary antibody against cathepsin S, cathepsin L (R&D 

Systems), cystatin C (Millipore), cystatin B (Santa Cruz Biotechnology), or LAMP1 at 

4°C. The cells were then rinsed with PBS and incubated with a secondary antibody 

(Invitrogen) for an hour at room temperature. 

 

4.2.6 Statistical Analysis 

To calculate the weighted colocalization coefficients, the pixels with intensities from both red and 

green fluorescent channels were summed and divided by the sum of total red pixels. Each pixel 

having a value equal to its intensity value in order to take into account the brightness of the pixel 

and ranges from zero to one. 

Two tailed student paired T-test with two-sample equal variance was performed on all 

statistical analysis. 
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4.3 Results 

4.3.1 E-64 increases intracellular active cathepsin S in a dose 
dependent manner in breast cancer cells 

To determine the effects of inhibitor treatment on active cathepsins in breast cancer cells, 

a range of E-64 up to 50 µM was incubated with MDA-MB-231 breast cancer cells for 24 

hours. This inhibitor range was chosen to include high concentrations to ensure 

internalization of the inhibitor and inhibition cysteine proteases. The cells were then 

lysed and processed for multiplex cathepsin zymography to detect the amount of active 

cathepsins and any changes that occur due to E-64. Although the multiplex cathepsin 

zymography can detect active cathepsins K, S, L, and V (Fig. 3.1 and 3.2), only 

cathepsins S and L were detected in the MDA-MB-231 lysates (Fig. 4.1A). Incubation 

with as low as 10 µM caused a significant increase in the amount of active cathepsin S in 

the cells (n=4, p<0.05), while the amount of cathepsin L in the cells was significantly 

decreased with as low as 5 µM E-64 (n=5, p<0.05) (Fig. 4.1A), as indicated by the 

cleared white bands in the multiplex cathepsin zymography. Since cathepsin L can also 

be detected using the more acidic pH4 assay buffer as previously published and 

demonstrated in the Chapter 3 results of this work [154], cathepsin zymograms using pH4 

assay buffers were also ran. Cell lysates were also prepared for Western blots to quantify 

the total amount of these cathepsins since the zymograms specifically detect the active 

forms. Western blots indicated that the small molecule did not significantly change the 

amounts of pro- and mature- cathepsin S present intracellularly at any of the 

concentrations (n=6, p<0.05) (Fig. 4.1A). The amount of pro cathepsin L and short chain 

cathepsin L was increased with 50 µM E-64 (n=8, *p<0.05) (Fig. 4.1A). To assess if 

there was any feedback between E-64 and the endogenous cathepsin inhibitors cystatin C 
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or cystatin B, Western blots were ran and the amount of cystatin C and cystatin B did not 

significantly change with any of the small molecule concentrations, indicating that there 

was no feedback between exogenous cathepsin inhibitors and the endogenous cathepsin 

inhibitor proteins. 

Since the amount of active cathepsin S was elevated and cathepsin L reduced with E-

64 after 24 hours, the dynamics of cathepsin S and any changes due to the inhibitor was 

assessed. Fresh media with either 50 µM E-64 or a vehicle control was added to MDA-

MB-231 breast cancer cells and incubated for 0, 2, 4, 8, 12, or 24 hours. At each time 

point, lysates were collected and equal amounts of protein were loaded for multiplex 

cathepsin zymography. Without the inhibitor, the amount of cathepsins S and L did not 

change over time. E-64 incubation stimulated a 94.2% fold increase in the amount of 

active cathepsin S by as early as 8 hours and a maximum of 160.7% fold by 24 hours 

compared to 0 hours and 0 M control (n=5, ** p < 0.01)(Fig 1C).  Conversely, cathepsin 

L over the same eight and 24 hour period when treated with 50 M E-64 led to a 56.5% 

fold reduction and 77.4% fold reduction, respectively (n=3, ** p < 0.01) (Fig 4.1B). The 

amount of active cathepsin S was quantified using ImageJ (Fig 4.1C). 
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Figure 4.1. Inhibitor-induced increase of active cathepsin S and reduction of 

cathepsin L occurs intracellularly in MDA-MB-231 breast cancer. (A) MDA-MB-231 

cells incubated with increasing amounts of E-64 for 24 hours were lysed and equal amounts 

of total protein loaded for multiplex cathepsin zymography with either a pH6 or pH4 assay 

buffer incubation (n=3 for each treatment, * p < 0.05, % p < 0.001). The amount of active 

cathepsins were quantified using ImageJ analysis. The same lysates from MDA-MB-231 

cells treated with varying inhibitor doses for 24 hours were run with Western blot analysis 

and probed for intracellular pro- and mature- forms of cathepsin S and cathepsin L. There 

were no changes in cathepsins S and L protein (n=6). (B) MDA-MB-231 cells were 

incubated with 50 µM E-64 or a vehicle control for 0, 2, 4, 8, 12, and 24 hours and lysates 

were collected at each time point. Equal amounts of total protein were loaded for multiplex 

cathepsin zymography with either a pH6 or pH4 assay buffer incubation. (C) The amount 

of active cathepsin S was quantified using ImageJ analysis (n=3, * p< 0.05). 

 

4.3.2 E-64 treatment causes co-localization of gelatin substrate and 
cathepsin S, and not cathepsin L 

It was important to understand if substrate degradation was co-localized with cathepsin S 

or L and if E-64 treatment changes the co-localization, thus MDA-MB-231 cells were 

incubated with fluorogenically quenched DQ-gelatin along with either 50 µM E-64 or a 
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vehicle control or for 24 hours. The cells were then fixed, immuno-stained for cathepsin 

S or L, and imaged using confocal microscopy. With the treatment, cathepsin S and the 

DQ-gelatin was co-localized (Fig. 4.2A), while there was no cathepsin L and DQ-gelatin 

co-localization (Fig. 4.2B). There was a minimal amount of cathepsin S or L co-localized 

with DQ-gelatin detected with the vehicle control treatment (Fig. 4.2A-B). This indicates 

that the inhibitor treatment causes preferential localization of gelatin substrate with 

cathepsin S, but not cathepsin L. 

 

Figure 4.2. E-64 increases cathepsin S, but not cathepsin L, localization with 

intracellular gelatin substrate degradation. MDA-MB-231 cells were incubated with 

DQ-gelatin along with either 50 µM E-64 or a vehicle control for 24 hours. The cells were 

then fixed and stained for (A) cathepsin S (Alexa Fluor® 568, red) or (B) cathepsin L 

(Alexa Fluor® 594, red). Representative confocal images of degraded DQ-gelatin (green) 

co-localized with cathepsin S or cathepsin L are depicted. Bars, 10 µm. 
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4.3.3 Broad spectrum inhibition with cystatin C also upregulates the 
amount of active cathepsin S 

To investigate if this increase in the amount of active cathepsin S was due to the small 

molecule inhibitor E-64 itself or due to cathepsin inhibition, MDA-MB-231 cells were 

incubated for 24 hours with increasing concentrations of recombinant cystatin C, the 

protein inhibitor for the cysteine cathepsin family. The concentrations of cystatin C used 

in this study were determined based on Abrahamson et al who reported cystatin C 

concentrations ranging from 0.1 to 3 µM in human body fluids [105]. The cells were then 

lysed and assayed for active cathepsins by zymography, and cystatin C protein by 

Western blotting. There was a dose dependent elevation in the amount of active cathepsin 

S in response to cystatin C treatment with over a 58% increase at 500 nM and 1 µM of 

cystatin C as detected by zymography (n=6, p < 0.05 and p < 0.001, respectively) (Fig. 

4.3A). 

There was no significant difference in the amount of active cathepsin L with cystatin 

C treatment (n=3). Intracellular cystatin C levels was also elevated after incubation with 

increasing cystatin C, suggesting that the exogenous cystatin C protein is being taken up 

by the cell during treatment (n=4-6, p < 0.05) (Fig. 4.3A). The upregulation in active 

cathepsin S due to cystatin C also occurred with E-64. While the amount of cathepsin L 

remained the same with cystatin C treatment unlike what was seen with small molecule. 

MDA-MB-231 cancer cells were incubated with cycloheximide (0.75 µg/ml) for 24 hours 

to inhibit protein synthesis, in the presence or absence of 500 nM recombinant cystatin C 

to confirm that the increase in intracellular cystatin C protein was due to endocytosis of 

cystatin C and not upregulated cystatin C production by the cell. Cycloheximide reduced 
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the amount of intracellular cystatin C by 74% (n=3, p < 0.001), except when the cells 

were also being incubated with exogenous cystatin C (n=3, p = 0.56) (Fig. 4.3B).  

Since active cathepsin S elevation occurred due to endocytosis of cystatin C, it was 

hypothesized that not only treatment but overexpression of cystatin C would elevate the 

amount of active cathepsin S. To test this hypothesis, MDA-MB-231 cells were 

transfected to overexpress cystatin C or with an empty vector used as a control. Cystatin 

C overexpression increased the amount of active cathepsin S compared to the empty 

vector control (n=3, p < 0.05) (Fig. 4.3C), while overexpression of cystatin C did not 

decrease active cathepsin L. 

To determine if both treatment in combination with cystatin C overexpression causes 

a synergistic effect on the amount of active cathepsin S, MDA-MB-231 cells were 

transfected to overexpress cystatin C or with an empty vector used as a control for 24 

hours followed by incubation with 50 µM E-64 or a vehicle control for an additional 24 

hours. Cystatin C overexpression and E-64 treatment both individually caused an 

elevation in the amount of active cathepsin S, while the combination of both inhibitor 

conditions had the same amount of active cathepsin S as compared to individual 

conditions. Both the combination of E-64 treatment and cystatin C overexpression along 

with E-64 treatment alone reduced the amount of cathepsin L (n=3, p < 0.05), but 

overexpression of cystatin C alone did not change the amount of cathepsin L (n=3) (Fig. 

4.3C). 

In addition, the changes in cathepsins S and L due to cystatin C overexpression are 

similar to what was seen with the cystatin C treatment. This suggests that overexpression 
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or exogenous cystatin C can also induce this active cathepsin S elevation, while a 

reduction in active cathepsin L reduction is specific to the small molecule treatment. 

 

 

Figure 4.3. Inhibitor induced cathepsin S upregulation also occurs with cystatin C, 

but it does not reduce active cathepsin L. (A) MDA-MB-231 cells treated with 

exogenously added recombinant cystatin C inhibitor dose curve for 24 hours were lysed 

and equal protein amounts of cell lysates loaded for multiplex cathepsin zymography and 

Western blots probing for cystatin C. The amount of active cathepsin S was upregulated 

along with cystatin C. (n=3-6, p < 0.05). (B) MDA-MB-231 cells were treated with or 

without exogenous cystatin C and 0.75 µg/ml cycloheximide for 24 hours. After treatment, 

equal protein amounts were loaded for Western blot assays conducted to determine 

intracellular cystatin C levels (n=3, p < 0.001). (C) MDA-MB-231 cells were transfected 

with either an empty vector or cystatin C plasmids followed by incubation with E-64 for 

24 hours. After 24 hours, the cells were lysed, equal amounts of protein were loaded for 

multiplex cathepsin zymography with a pH6 or pH4 assay buffer. The amount of active 

cathepsin S in the cystatin C transfected cells increased compared to the CMV plasmid 

control (n=3, p < 0.05). 
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4.3.4 Cystatin C and cathepsin S, but not cathepsin L, are co-
localized when MDA-MB-231 cells are treated with exogenous 
cystatin C 

Since cathepsin inhibitor treatments have differential effects on the amount of active 

cathepsins S and L and the co-localization of gelatin with cathepsin S was different 

compared to the co-localization with cathepsin L, it was hypothesized that cathepsins S 

and L were not in the same cellular compartments. To test this hypothesis, MDA-MB-

231 cells were incubated with either 500 nM cystatin C or a vehicle control, fixed, and 

immunostained for cathepsins S and L. Cathepsins S and L were in different 

compartments regardless of the cystatin C treatment (Fig. 4.4A). This suggests that the 

differential response of cathepsins S and L by broad spectrum inhibitors could be due to 

differences in cellular locations. 

To determine if cystatin C would be co-localized with either cathepsin S or L, MDA-

MB-231 cells were incubated with or without 500 nM cystatin C for 24 hours and 

immunostained for cystatin C, cathepsin S, and cathepsin L. There was an increase in the 

amount of cathepsin S and cystatin C co-localization after exogenous cystatin C 

incubation (Fig 4.4B). Cathepsin L did not co-localize with cystatin C with or without 

cystatin C treatment (Fig 4.4C). To validate the staining in the confocal images, the co-

localization of cathepsins S and L, and cystatin C with either cathepsin S or L was 

quantified using the Zeiss co-localization analysis to calculate the weighted co-

localization coefficient (n = 3-6, p < 0.005) (Fig 4.4D). 

In order to assess if cathepsins S or L were in the same cellular compartments as other 

cysteine cathepsins, MDA-MB-231 cells were immunostained for cathepsin S, cathepsin 

L, or cathepsin V, another cysteine cathepsin. Cathepsins S, L, and V were not co-

localized, (Fig. 4.5A-C). Additionally, effects of cathepsin inhibition on the co-location 
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of cathepsins S or L with cathepsin V was investigated. Immunostaining of cathepsins S, 

L, or V was conducted in MDA-MB-231 cells. Cathepsin V did not co-localize with 

cathepsins S or L with or without E-64 treatment (Fig 4.6A-B). 

 

 

Figure 4.4. Cystatin C does not co-localize with cathepsin L, but cathepsin S-cystatin 

C containing vesicles occur with inhibitor treatment. (A) MDA-MB-231 cells were 

treated with 500nM cystatin C or a vehicle control for 24 hours and fixed and stained for 

cathepsin S (Alexa Fluor® 568, red) or cathepsin L (Alexa Fluor® 488, green). Bars, 5 

µm. (B) MDA-MB-231 cells fixed after 24 hours of exogenous cystatin C treatment were 

stained for cathepsin S (Alexa Fluor® 488, green) and cystatin C (Alexa Fluor® 568, red). 

Representative confocal images of the stained samples were obtained. Note the cathepsin 

S and cystatin C colocalization in large vesicles after exogenous cystatin C inhibitor 

treatment (white arrows). Bars, 10 µm.  (C) Cathepsin L (Alexa Fluor® 488, green). Bars, 

10 µm. (D) The co-localization between cathepsin S and cystatin C and cathepsin L was 

quantified using Zeiss co-localization analysis to calculate the weighted co-localization 

coefficient (n=3-5, * p < 0.005). 
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Figure 4.5. Cathepsin S, L, and V are located in different subcellular compartments. 
MDA-MB-231 cells were fixed and stained for cathepsin S (Alexa Fluor® 568, red), 

cathepsin L (Alexa Fluor® 488, green; or Alexa Fluor® 594, red), or cathepsin V (Alexa 

Fluor® 488, green). Bars, 20 µm and 5 µm. 
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Figure 4.6. E-64 does not change cathepsins S or V co-localization with cathepsin V. 
(A) MDA-MB-231 cells were treated with a vehicle control or 50µM E-64 for 24 hours 

and fixed and stained for cathepsin L (Alexa Fluor® 594, red) or cathepsin V (Alexa 

Fluor® 488, green). Bars, 20 µm and 5 µm. (B) MDA-MB-231 cells were treated with a 

vehicle control or 50µM E-64 for 24 hours and fixed and stained for cathepsin S (Alexa 

Fluor® 568, red) or cathepsin V (Alexa Fluor® 488, green). Bars, 20 µm and 5 µm. 

 

 

4.3.5 Cathepsin L is localized to the cytoplasm of MDA-MB-231 cells 
while cathepsin S is not 

To further investigate the cellular location of cathepsin L since it was not co-localized with 

cathepsin S or cystatin C and previous studies of cathepsin L have reported cytoplasmic 

detection [109], cathepsin L localization in the cytoplasm was investigated. To test this, 

MDA-MB-231 cells were stained for cystatin B, a cysteine protease inhibitor localized in 
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the cytoplasm; and co-stained for cathepsin L or cathepsin S. There was dominant co-

localization between cathepsin L and cystatin B as indicated by the overlapping yellow 

fluorescence signal. Some cathepsin L was in vesicular compartments not containing 

cystatin B (Fig. 4.7A). There was no co-localized cathepsin S and cystatin B (Fig. 4.7B). 

To confirm this finding, E-64d, which is membrane permeable but converts to the 

membrane-impermeable E-64c derivative upon cleavage of the ethyl ester intracellularly 

[106, 155], was incubated with the cells at increasing concentrations for 4 hours and the 

active cathepsin L band was detected by cathepsin zymography. This early time point was 

chosen to prevent any inhibitor-induced cathepsin feedback from occurring. Cathepsin L 

was absent at all E-64d concentrations tested, even as low as 1 µM (n=4-5, p < 0.05) (Fig. 

4.7C). This indicates that cathepsin L, and not cathepsin S, is susceptible to inhibition by 

E-64d, which inhibits proteases in the cytoplasm. 
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Figure 4.7. Cathepsin L, and not cathepsin S, is colocalized with cystatin B in the 

cytoplasm. (A) MDA-MB-231 cells were fixed and stained for Cathepsin L (Alexa Fluor 

® 488, green), cystatin B (Alexa Fluor® 568, red), and nuclear (DAPI, blue) or (B) 

cathepsin S (Alexa Fluor ® 488, green), cystatin B (Alexa Fluor® 568, red), and nuclear 

(DAPI, blue). Representative confocal images of the stained MDA-MB-231 cells shows 

cathepsin L and cystatin B cytoplasmic colocalization. Bars, 20µm and 5µm. (C) MDA-

MB-231 cells treated with E-64d dose curve for 24 hours were lysed and equal amounts of 

protein lysates were loaded for multiplex cathepsin zymography with pH 6 and pH 4 assay 

buffers. Intracellular active cathepsin L levels were decreased even with 1 µM E-64d (n=4-

5, p < 0.001), while the amount of active cathepsin S was not changed (n=5-6). 

 

 

 

4.3.6 Cathepsins L is secreted while only minimal amounts of 
cathepsin S is trafficked for secretion in MDA-MB-231 cells 

It was hypothesized that cathepsins S and L are differentially trafficked in the MDA-MB-

231 cells since they are not in the same compartments. The amount of secreted cathepsin 

S and L was investigated to test this hypothesis since the secretion of each cathepsin 
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depends on the trafficking within transport pathways. The conditioned media from MDA-

MB-231 cells incubated with either 50 µM E-64 or a vehicle control was collected after 

24 hours incubation, concentrated, and equal volumes of the media were loaded for 

multiplex cathepsin zymography and Western blot. The membrane was probed for 

cathepsin S followed by stripping and reprobing for cathepsin L. The active cathepsin L 

and total cathepsin L protein was detected in both the multiplex cathepsin zymography 

and Western blot, respectively (n=3) (Fig. 4.8A). Only minimal amounts of active 

extracellular cathepsin S was detected in the multiplex cathepsin zymography. This 

corresponds with the low amounts of detectable cathepsin S protein from the conditioned 

media detected in the Western blot (n=3). Similar results were seen in conditioned media 

collected from cells incubated with 500nM cystatin C for 24 hours (n=3) (Fig. 4.8B). 

 

 

 

 



www.manaraa.com

 53 

 

Figure 4.8. Cathepsin L is secreted regardless of inhibitor treatment. (A) Conditioned 

media from MDA-MB-231 cells incubated with 50 µM E-64 or a vehicle control for 24 

hours was collected, concentrated, and equal volumes were loaded for multiplex cathepsin 

zymography or Western blots (n=3, p < 0.05). (B) Similarly, MDA-MB-231 cells were 

incubated for 24 hours with cystatin C treatment. Conditioned media was then collected, 

concentrated, and equal volumes were loaded for multiplex cathepsin zymography. Active 

cathepsins S and L found in the conditioned media demonstrates that minimal amounts of 

extracellular cathepsin S are detected, while cathepsin L has a higher detectable signal. 

Active cathepsin S and L is significantly reduced after 24 hours of inhibitor treatment (n=3, 

% p < 0.01). The same samples were analyzed using Western blots and cathepsin S had 

minimal detection while cathepsin L had abundant amounts. 
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Figure 4.9. Cathepsin inhibitor uptake results in upregulation of active cathepsin S as 

a compensatory mechanism. The current working model of cathepsin inhibitor treatment 

of MDA-MB-231 breast cancer cells is during cathepsin inhibitor treatment the inhibitor 

is taken up by the breast cancer cells (A). After inhibitor uptake, the vesicles containing 

the inhibitor fuses with vesicles containing cathepsin S and inhibits vesicular cathepsins 

preventing substrate degradation (B). This results in an upregulation of the amount of 

active cathepsin S (C) in order to compensate for the decrease in substrate degradation 

within the system (D). 

 

4.4  Discussion 

This study has shown that broad spectrum cathepsin inhibition using either a small 

molecule inhibitor or protein inhibitor causes compensatory mechanisms in human breast 

cancer cells to elevate the amount of intracellular active cathepsin S. This suggests that 

cellular feedback mechanisms within the system upregulated the amount of active 

cathepsin S in order to compensate for any reduced proteolysis due to the inhibitor. This 

finding is important for developing and improving cathepsin inhibitors for breast cancer 

therapies. Thus far, the use of cathepsin inhibitors for cancer therapeutics has been 

widely discussed, but rarely utilized in part due to the side effects elicited by the 
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therapies. Previous reports have also investigated the effects of cathepsin inhibitors on 

cathepsins in vitro and in vivo. The less potent cysteine cathepsin inhibitor leupeptin was 

shown to increase cathepsin B activity in rat fibroblasts as well as in mouse calvaria 

while E-64 still maintained inhibitory effects on the cathepsin B activity [156]. In 

addition, cathepsins B, H, and L protein amounts were elevated in the liver of rats due to 

the more potent inhibitor E-64-C, also known as EP-475 [145] [157]. While these studies 

provide important insight into the effects of cathepsin inhibitors, unlike these previous 

studies we have successfully demonstrated that this unexpected inhibitor-induced 

feedback occurs in human cells and is capable of occurring in breast cancer. This 

highlights the need for proper dosing strategies and the development of highly selective 

inhibitors that maintain their selectivity even in intracellular conditions to prevent off 

target side effects for breast cancer therapies. 

Lysosomal inhibitors have also been shown to elevate cathepsin activity in cells and 

in vivo [158, 159]. Even though it is thought that the stabilization of the cathepsin 

proteins due to the inhibitors could be contributing to the elevated protease activities, we 

have clearly shown that the inhibitor-induced feedback of the cathepsins that occurs in 

breast cancer cells is dependent on the localization of the cathepsin. Studies have 

investigated cathepsin L and cathepsin S localization and trafficking [107, 160, 161] and 

reported detection of cathepsin S and cathepsin L in different cellular compartments in 

thyroid tissue [161]. This work focuses on the localization of these two proteases in a 

triple negative breast cancer cell line, and while cathepsin S was co-localized with gelatin 

substrate and cystatin C, this was in contrast to cathepsin L which was detected in the 

cytoplasm. Although the inhibitor was co-localized with cathepsin S protein, the 
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increased cleaved gelatin substrate along with the elevation of active cathepsin S all 

suggest that cathepsin S could be contributing to the substrate cleavage within the 

vesicles after inhibitor treatment and feedback within the system increased active 

cathepsin S. In addition, the inhibitor may be bound to other lysosomal proteases 

preventing substrate degradation from those proteases and preventing substrate 

degradation within the vesicles. Both inhibitors used within this study were broad 

spectrum cathepsin inhibitors capable of inhibiting lysosomal cysteine proteases. While 

E-64 has similar inhibition rates for both cathepsins S and L, it is also a potent inhibitor 

for cathepsin B, the most abundant cathepsin [162]. Cystatin C also has sub-nanomolar 

inhibition constants for cathepsin S and L, making it a potent inhibitor of these proteases, 

but it still has a 0.25 nM inhibitor constant for cathepsin B [12]. Since the amount of total 

cathepsin S protein was not increased after inhibitor treatment, the elevated amounts of 

active cathepsin S could be due to increase activation of the pro-cathepsin S and not due 

to changes in transcriptional regulation of the cathepsin S gene. 

Concurrently, the active cathepsin S elevation due to the inhibitor did not occur with 

cathepsin L which had reduced active protein with E-64 and unchanged amounts with 

cystatin C. Although cathepsin L is a lysosomal cysteine protease, it was detected in the 

cytoplasm of the breast cancer cells. Cytoplasmic cathepsin L has also been detected in 

podocytes, where it was involved in cleavage of the GTPase dynamin which results in 

cytoskeleton reorganization [109]. Nuclear cathepsin L has also been reported to cleave 

the CCAAT-displacement protein/cut homeobox transcription factor [108, 163] and 

cleave and modify histones [164, 165]. All of this indicates that the cytoplasmic 

cathepsin L has functional roles and downregulation of cathepsin L during inhibitor 
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treatment could reduce the transcriptional regulation of other genes and change cellular 

morphology. 

In addition, cathepsin L was also secreted suggesting that it is trafficked in secretory 

vesicles which could be seen in Figure 4.7A in which some of the punctate cathepsin L 

protein staining was not co-localized with the cystatin B protein. Cathepsin S was not 

readily secreted suggesting that, unlike cathepsin L, cathepsin S is not trafficked for 

secretion. These differences in cathepsins S and L trafficking may explain why active 

cathepsin L is not upregulated during cathepsin inhibitor treatment like active cathepsin 

S. 

These findings are not only important in understanding how cathepsin inhibitors can 

induces feedback mechanisms in breast cancer cells, but can also be useful in studying 

diseases in other tissues since cathepsin L is ubiquitously expressed in different cells and 

tissues. 

4.5  Conclusion 

In conclusion, the broad-spectrum cathepsin inhibitor-induced cathepsin S elevation and 

cathepsin L inhibition is a cellular feedback mechanism that is regulated by preferential 

localization of the inhibitor to cathepsin S. Understanding this feedback is critical for 

developing effective therapeutics and dosing strategies targeting cysteine cathepsins for 

the prevention cancer invasion and metastasis. 
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CHAPTER 5 

Consequences of inhibitor-induced proteolytic network perturbations in 

breast cancer 

 

5.1  Introduction 

According to the American Cancer Society, about one in five diagnosed breast cancer 

cases are classified as human epidermal growth factor receptor (HER2)-positive. Triple-

negative subtypes, which is the most aggressive form of breast cancer [37], accounts for 

12% of breast cancer cases [28] while the estrogen receptor (ER)- or progesterone 

receptor (PR)-positive tumors accounted for 84% of diagnosed breast cancer in 2012 

[28]. 

During cancer progression, transformed tumor cells along with tumor-associated cells 

within the tumor microenvironment overexpress cysteine cathepsins to assist with the 

invasion and metastasis of the tumor [5-11]. Proteases, such as cysteine cathepsins and 

matrix metalloproteinases (MMPs), are secreted by tumor associated macrophages 

(TAMs), which are differentiated from circulating monocytes from the vasculature, and 

have been shown to play a significant role in tumor growth and invasion [59, 83, 97, 166-

169], due to local degradation of extracellular matrix substrates upon secretion [81, 128, 

170, 171]. TAMs, which can account for as much as 50% of tumor volume [13, 59], are 

often associated with poor prognosis [172-174]. 

Cathepsins V and K have been shown to be expressed in breast carcinomas [82, 86]. 

The role of cathepsins and other proteases in cancer cell migration and invasion depends 

on the mechanisms by which the tumor cells invade. When cancer cells invade 
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collectively in sheets or clusters, proteolysis at the leading edge occurs, which is in 

contrast to amoeboid migration that occurs when cells invade individually [175]. Breast 

cancer cells have been reported to acidify the extracellular milieu [45] providing an 

optimal environment for cathepsin activity in the pericellular environment. Our own lab 

has shown that not only the expression, but also the active cathepsins is greater in human 

breast tumor tissue compared to the patient matched normal breast tissue [9]. While the 

amount of cathepsins K and L was upregulated in breast cancer tissue and peaked at stage 

II, active cathepsin S amounts remained comparable to that detected in the normal tissue 

regardless of cancer stage [9]. Although cathepsins are thought to assist with cancer 

invasion due to degradation of ECM proteins in the surrounding environment, cathepsins 

also play an important role intracellularly via the degradation of internalized ECM 

proteins such as collagen [5, 137, 139], , the shedding of surface bound proteins from 

cancer cells reducing Ras GTPase intracellular signaling [141], and the cleavage of the 

surface membrane protein CD74 in endosomes [143] to transcriptionally regulate  CCL2, 

a pro-inflammatory chemokine which promotes metastasis [142]. The multi-functional 

roles cathepsins play in tumor progression have contributed to targeting them for cancer 

therapeutics. 

Cathepsins are inhibited by the family of protein inhibitors cystatins [12] that are 

categorized into three families. The family 1 cystatins (also referred to as stefins), such as 

cystatin B, are cytoplasmic and inhibit cathepsins within the cell, while family 2 

cystatins, such as cystatin C, are secreted and inhibit extracellular cathepsins [12, 176]. 

None of the inhibitors in family 3 act on cathepsins. It is well established that cystatin C 

is constitutively secreted and found in various human bodily fluids [12]. Cystatin B is 
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distributed throughout the cytoplasm of cells, but is not found on the cell surface [149]. 

The ratio of cathepsin to cystatin appears to be a better indicator of cancer prognosis than 

just cathepsin detection alone [177-179] and can be used to predict cancer invasion [180]. 

In addition to the cystatins, cathepsins can be inhibited with small molecule cysteine 

cathepsin inhibitors including E-64 and E-64d. E-64d is a derivative of E-64 which can 

passively cross cellular membranes and inhibit intracellular cathepsins after ethyl ester 

cleavage [106, 155]. 

Traditionally the effect of one protease on substrate cleavage is studied, leaving a gap 

in exploring interactions between proteases. Within the cathepsin proteolytic network, 

cannibalistic degradation with cathepsin S preferentially degrading cathepsin K over 

collagen substrates occurs [181]. Cathepsin S can also activate other cathepsins such as 

cathepsin C [140]. 

This study investigated the effects of both protein cathepsin inhibitors cystatin C and 

cystatin B and the small molecule cathepsin inhibitors E-64 and E-64d on cancer cell 

invasion, substrate degradation, and active cathepsins L, S, and V amounts. 

Understanding how broad spectrum inhibitors affect individual cathepsins in different 

cellular environments and, ultimately, if these effects promote cancer cell invasion is 

important for therapeutic development. This was accomplished by overexpressing or 

treating cancer cells, macrophages, and human breast tissue with the above mentioned 

inhibitors followed by measuring invasion, gelatinase degradation, and the amount of 

secreted and intracellular active cathepsins. Furthermore, murine and human cells and 

tissue were studied to determine if the effects of the inhibitor were species specific. 
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5.2  Materials and Methods 

5.2.1  Materials 

Normal breast tissue was provided by our collaborator, Dr. John S. Kennedy, at the Dekalb 

Medical Center (Decatur, GA, USA) and purchased from National Disease Research 

Interchange (NDRI) (Philadelphia, PA, USA). Anti-human cathepsin S, L, and V 

antibodies (R&D Biosystems), anti-actin (Santa Cruz Biotechnology), and secondary 

donkey anti-mouse or anti-goat antibodies tagged with an infrared fluorophore (Li-Cor) 

were used to detect protein with a Li-Cor Odyssey scanner. 

 

5.2.2  Cell Culture 

RFP tagged MDA-MB-231 and GFP tagged MCF-7 epithelial cells were cultured with 

Dulbecco's Modification of Eagles Medium (DMEM) with 4.5 g/L Glucose (Lonza) 

supplemented with 10% fetal bovine serum (FBS) – Premium Select (Atlanta Biologicals), 

1% L-glutamine (Life Technologies), 1% Eagle′s minimum essential medium (MEM) non-

essential amino acids (Sigma Aldrich), and 1% penicillin/streptomycin (Life 

Technologies). MCF-10A epithelial cells were cultured with the Mammary Epithelium 

Basal Medium (MEBM) Bullet kit (Lonza). RFP tagged MDA-MB-231 breast cancer cells 

(Cell Biolabs, Inc.) was transfected with one of the plasmids containing full-length 

expression sequences of either green fluorescent protein (GFP), red fluorescent protein 

(RFP), cystatin C (CysC), or cystatin B (CysB) under control by the CMV promoters 

(Origene) using Lipofectamine 2000 (Invitrogen). Cells were then incubated for 24 hours 

at 37°C.  

GFP tagged human THP-1 monocytes (ATCC) were cultured in RPMI with 10% FBS, 

1% L-glutamine, 1% penicillin-streptomycin, and 0.05 mM 2-mercaptoethanol. Cells 
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were incubated with either the cysteine cathepsin broad-spectrum small molecule 

inhibitor E-64 (Calbiochem), E-64d (Calbiochem), the cathepsin L inhibitor Z-FY-CHO 

(Calbiochem), or the broad spectrum MMP inhibitor GM6001 (Calbiochem). 

 

5.2.3  Gelatin degradation assay 

Transfected or non-transfected MDA-MB-231 breast cancer cells (Cell Biolabs, Inc.) were 

incubated with 50 µM or 5 µM of the cathepsin broad-spectrum small molecule inhibitor 

E-64 or E-64d, or the broad spectrum MMP inhibitor GM6001 (GM) (Calbiochem) along 

with 0.05 mg/ml DQ-gelatin from bovine skin, fluorescein conjugate (Invitrogen) at 37°C. 

The amount of degraded DQ-gelatin was measured using spectroscopy (Biotek Synergy 

H4 Multi-mode Plate Reader) at 1, 2, 4, 8, 12, and 24 hours.  After the 24 hour incubation, 

the conditioned media was collected and concentrated using VivaSpin 500 centrifugal 

concentrators (GE Healthcare). MDA-MB-231 cells were washed, lysed, sonicated, and 

centrifuged to collect the soluble fraction. Protein concentration was determined using a 

micro BCA assay kit (Pierce). Conditioned media and cell lysates were collected and 

prepared for multiplex cathepsin zymography, Western blots, and qRT-PCR to measure 

the amount of secreted and intracellular cathepsin K, cathepsin S, cystatin C, and cystatin 

B. Active- and pro- cathepsin protein were quantified using densitometry (ImageJ). 

 

5.2.4  Cathepsin zymography 

This protocol is as previously published by us with minor changes [124].  After non-

reducing sodium dodecyl sulfate electrophoresis, proteins were renatured and incubated in 

activity buffer as previously described [124].   Cathepsins were activated using a sodium 
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phosphate activity buffer, pH 6.  The gels were stained with Coomassie Blue R250 and 

imaged using an ImageQuant LAS 4000. 

 

5.2.5  Western blots  

SDS-PAGE was performed as described above without a gelatin substrate. Proteins were 

transferred to a nitrocellulose membrane (Bio-Rad) and probed with monoclonal anti-

human cathepsin K monoclonal antibody clone 182-12G5 (Millipore), anti-human 

cathepsin S and V antibodies (R&D Biosystems), or anti-mouse cathepsin L antibody 

(R&D Biosystems).  Secondary donkey anti-mouse or anti-goat antibodies tagged with an 

infrared fluorophore (Rockland) were used to image protein with a Li-Cor Odyssey 

scanner. 

 

5.2.6  Invasion assay 

RFP tagged MDA-MB-231 breast cancer cells were transfected with either RFP, cystatin 

C, or cystatin B. Twenty-four hours post-transfection, a 2 mg/ml type I collagen gel 

(Invitrogen) was polymerized on top of the cells and incubated for 24 hours at 37°C.  

Invasion into the collagen gel was assessed using a Zeiss LSM confocal microscope.   

 

5.3  Results 

5.3.1 Inhibitor-induced cathepsin S elevation occurs in non-
cancerous human breast tissue and varies depending on 
invasiveness of epithelial cell line 

The effect of E-64 on active cathepsin S in human cancerous and non-cancerous 

breast tissue was investigated, since E-64 induced cathepsin upregulation occurred in the 

MDA-MB-231 breast cancer cells. Non-cancerous breast tissue and patient matched 
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cancer breast tissue excised during mastectomy or lumpectomy was obtained and 

cultured ex vivo with increasing amounts of the small molecule for 24 hours. The tissue 

was homogenized and equal amounts of protein were loaded and assayed for active 

cathepsins using multiplex cathepsin zymography. Similar to the MDA-MB-231 cells, 

treatment with 50 µM E-64 significantly increased the amount of active cathepsin S while 

reducing cathepsin L in the non-cancerous breast tissue (n=7, p < 0.05) (Fig. 5.1A). In 

contrast to the non-cancerous tissue, the treatment decreased active cathepsin S along 

with cathepsin L in the cancerous tissue (n=4). Active cathepsin V was elevated in the 

cancerous tissue compared to the non-cancerous tissue, but the inhibitor had no effect on 

active cathepsin V (n=4) (Fig 5.1A). 

Since the cancerous tissue did not have the inhibitor induced response similar to the 

non-cancerous tissue, human THP-1 monocytes differentiated into macrophages with 

phorbol 12-myristate 13-acetate (PMA) were incubated with a range of E-64 

concentrations for 24 hours to test the hypothesis that upregulation of cathepsin S due to 

the small molecule inhibitor does not occur in other cell types such as macrophages, 

which are known to enter the tumor microenvironment and promote tumor growth, 

invasion, and metastasis [168, 169] in part due to cathepsins [59, 97]. The cells were then 

lysed and processed for multiplex cathepsin zymography and Western blot. In contrast to 

the murine RAW 267 macrophages, the amount of intracellular active cathepsin S in the 

human THP-1 macrophages increased with 50µM E-64 compared to the inhibitor control 

(n=3, p < 0.05) (Fig. 5.1B). In addition to the active form, the amount of mature and pro 

cathepsin S was upregulated with 50µM E-64 (n=3, p < 0.05) (Fig. 5.1C). While, the 

amount of intracellular active cathepsin L decreased with 50µM E-64 incubation (n=3, p 
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< 0.05) (Fig. 5.1B), the amount of pro cathepsin L was elevated with 50µM E64 

compared to the inhibitor control (n=3, p < 0.05) (Fig.5.1C). The amount of active 

cathepsin V also increased with 50µM E-64 (n=3, p < 0.001) (Fig. 5.1B). In addition, 

upon differentiation the PMA-induced THP-1 macrophages had elevated amounts of 

active cathepsins S and L compared to the non-differentiated THP-1 monocytes (n=3, p < 

0.001). 

 

 

Figure 5.1. E-64 upregulates active cathepsin S in non-cancerous human breast tissue 

and macrophages. (A) Normal breast tissue was purchased from NDRI and the tissue 

cultured ex vivo for 24 hours with increasing amounts of E64 inhibitor. The tissue was 

homogenized and equal amounts of protein were loaded for multiplex cathepsin 

zymography. The amount of active cathepsin S in the homogenates significantly increased 

with 50µM E64 treatments (n=7, * p < 0.05), while the active cathepsin L decreased (n=7, 

* p < 0.05). (B) THP-1 monocytes and PMA-induced macrophages were incubated with 

E64 for 24 hours. Cells were lysed and equal amounts of total protein were assayed using 

multiplex cathepsin zymography. Active intracellular cathepsins S, L, and V were detected 

and quantified (n=3, *p < 0.05, % p < 0.001). (C) The same lysate samples were assayed 

using Western blot analysis and cathepsin S, L, and V protein amounts in THP-1 

monocytes and PMA-induced macrophages was quantified (n=3, *p < 0.05, % p < 0.001). 
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To determine if the active cathepsin profile varied based on receptor classification, 

the triple-negative BT-549, HCC-38, HCC-70, HCC-1395, HCC-1806, and MDA-MB-

231 breast cancer cell lines; ER-positive MCF-7 breast cancer cell line; and HER2-

positive AU-565, HCC-202, HCC-1419, and SkBr-3 breast cancer cell lines were lysed 

and assayed using multiplex cathepsin zymography. In general, the triple negative breast 

cancer cells had increased amounts of active cathepsin compared to the HER+ cell lines. 

In addition, 6 out of 6 triple negative cell lines assayed including the MDA-MB-231 cells 

had two or more active cathepsins detected, while this was only true for 2 out of 4 HER+ 

cell lines (Fig. 5.2A). 

Since E-64 caused an inhibitor-induced upregulation of cathepsin S in the MDA-MB-

231 breast cancer cells, the effect of the small molecule inhibitor on active cathepsins in 

other epithelial cell lines was investigated. A range of the inhibitor from 0 to 50 µM was 

incubated with either MCF-10A epithelial cells, estrogen (ER)-positive MCF-7 breast 

cancer cells, or triple-negative MDA-MB-231 breast cancer cells for 24 hours. The cells 

were then lysed and processed for multiplex cathepsin zymography to detect the amount 

of active cathepsins. In the non-transformed MCF-10A epithelial cells, the E-64 

treatment did not cause an increase in the amount of active cathepsin S (n=3). The 

amount of active cathepsin S in the MCF-7 breast cancer cells was not significantly 

different compared to the vehicle control (n=3). With the more aggressive MDA-MB-231 

breast cancer cells, the amount of active cathepsin S was increased with an E-64 

incubation as low as 10 µM (n=4, p<0.05) (Fig. 5.2B), as indicated by the cleared white 

bands in the multiplex cathepsin zymography. Cathepsin L was only detected in the 
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MDA-MB-231 cells and not the less aggressive MCF-7 cells or the MCF-10A epithelial 

cells. 

 

 

Figure 5.2. E-64 elevation of intracellular active cathepsin S is dependent on the type 

of epithelial cell line. (A) Equal amounts of lysates from ER-positive and triple-negative 

breast cancer cell lines were loaded for cathepsin zymography. (B) MCF-10A, MCF-7, and 

MDA-MB-231 cells incubated with increasing amounts of E-64 for 24 hours were lysed 

and equal amounts of total protein loaded for multiplex cathepsin zymography (n=3 for 

each treatment) 

 

 

5.3.2 Inhibitor-induced elevation of cathepsin S occurs with 
cathepsin L expression 

It was previously reported that activation and degradation among cathepsins occurs [140, 

181-183] as well as compensatory elevation of cathepsin expression in cathepsin 

knockout models [4, 60, 88, 114, 115, 184]. In addition, it was previously demonstrated 

in Figure 4.1 that E-64 reduces the amount of cathepsin L. Due to all of this, MDA-MB-

231 cells were incubated with the cathepsin L inhibitor Z-FY-CHO, E-64, or vehicle 

control for 24 hours to test the hypothesis that upregulation of cathepsin S with E-64 was 

due to cathepsin L inhibition. The cells were then lysed and equal amounts of protein 

loaded for multiplex cathepsin zymography. Z-FY-CHO, the cathepsin L inhibitor, 

elevated the amount of active cathepsin S similar to that seen with E-64 (n=6, p < 0.05) 
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(Fig. 5.3). While the amount of intracellular cathepsin L was reduced with the incubation 

of E-64, the active cathepsin L was not reduced by Z-FY-CHO. E-64 and Z-FY-CHO 

both caused an increase in pro cathepsin L, which is an indicator of cathepsin L 

inhibition. 

 

Fig. 5.3. Cathepsin L inhibitor causes cathepsin S upregulation in triple negative 

MDA-MB-231 breast cancer cells. MDA-MB-231 breast cancer cells were incubated 

with either the Z-FY-CHO cathepsin L inhibitor or E64 for 24 hours followed by lysing 

and protein quantification. Equal protein amounts were loaded for multiplex cathepsin 

zymography. The amount of active cathepsin S was increased with the incubation of 5µM 

and 50µM of Z-FY-CHO, similar to what was seen with the 50µM E64 treatment (n=6). 

Cell lysates were also loaded for immunoblotting of cathepsin S, cathepsin L, and actin 

(n=3). 

 

 

Thus far, it has been shown that E-64 upregulates intracellular cathepsin S in human cells 

and tissues (Fig. 4.1 and Fig. 5.1). Mice do not have an orthologue to human cathepsin L, 

thus a murine system was used to investigate if cathepsin L is involved with the 

regulation of intracellular active cathepsin S during E-64 treatment. To validate the 

finding seen with the cathepsin L inhibitor, murine RAW 264.7 macrophages were 
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incubated with 50 µM E-64 for 24 hours. The amount of active cathepsin S did not 

increase with the small molecule inhibitor as detected by multiplex cathepsin 

zymography (n=3) (Fig. 5.4A). 

To determine if the small molecule would inhibit the amount of secreted active 

cathepsins, murine RAW 264.7 macrophages were incubated with 5 µM E-64 or 5 µM E-

64d for 24 hours and conditioned media was collected, concentrated, and equal volumes 

were loaded for multiplex cathepsin zymography or MMP zymography. The amount of 

secreted cathepsin S was reduced with either E-64, the extracellular inhibitor, or E-64d, 

the intracellular inhibitor (n=3, p < 0.05) (Fig. 5.4B). Both E-64 and E-64d also reduced 

the amount of secreted murine cathepsin L (n=3, p < 0.01) (Fig. 5.4B). This was in 

contrast to the amount of MMPs which was not affected by either E-64 or E-64d (n=3) 

(Fig. 5.4B). 

 

Figure 5.4. E-64 does not cause inhibitor induced cathepsin S upregulation in murine 

macrophages not expressing human cathepsin L. (A) RAW 264.7 macrophages were 

treated with 50 µM E-64 for 24 hours. The cells were lysed, equal amounts of protein were 

loaded for multiplex cathepsin zymography. (B) RAW 264.7 macrophages were treated 

with 5 µM E-64, 5 µM E-64-d, or a vehicle control for 24 hours. Conditioned media was 

collected and equal volume amounts were loaded for cathepsin and MMP zymography. 
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Elevation of cathepsin S due to E-64 did not occur in murine macrophages, which do not 

have an orthologue for human cathepsin L (Fig.5 4), unlike what was seen in the human 

mammary tissues and epithelial cells (Fig. 4.1 and Fig. 5.1). Murine mammary fat pads 

were harvested and incubated with increasing amounts of E-64 for 24 hours to test the 

hypotheses that human cathepsin L is needed to cause the inhibitor-induced upregulation 

of cathepsin S in mammary tissue. The tissue was homogenized and equal amounts of 

protein were loaded for multiplex cathepsin zymography and Western blot analysis. 

Similar to the RAW 264.7 macrophages, the amount of active cathepsin S did not change 

due to the incubation of small molecule (n=6) (Fig. 5.5). The amount of pro cathepsin S 

and murine cathepsin L protein was increased as detected by Western blot (n=3) (Fig. 

5.5). 

 
 

Figure 5.5. Active cathepsin S elevation due to E-64 does not occur in murine 

mammary fat pads that do not express human cathepsin L. (A) Mammary fat pad tissue 

samples obtained from apolipoprotein E (apoE) -/- mice were incubated ex vivo with 

increasing amounts of E-64 for 24 hours prior to being homogenized and equal amounts of 

protein loaded for cathepsin zymography and Western blot analysis (n=6-8). 
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To determine if cathepsin inhibition would affect breast cancer cell invasion, a collagen 

gel was polymerized on top of RFP tagged MDA-MB-231 breast cancer cells transfected 

to overexpress either cystatin C, cystatin B, or RFP. After 24 hours incubation, the 

number of invading cells into the collagen gel was visualized using confocal microscopy. 

There was an increase in the number of invading cells into the collagen gel with the cells 

overexpressing cystatin C compared to the RFP control cells. The same was seen with 

MDA-MB-231 cells overexpressing cystatin B (n=4) (Fig. 5.6A). 

Since cancer invasion can occur due to ECM degradation [5, 137, 139], MDA-MB-

231 cells overexpressing cystatin C, cystatin B, or a control were incubated with DQ-

gelatin for 24 hours and the amount of degraded substrate was quantified using 

spectroscopy to test the hypothesis that the increase in cancer cell invasion was mediated 

by substrate degradation. Overexpressing cystatin C or B in MDA-MB-231 cells elevated 

the amount of degraded gelatin compared to the GFP and non-transfected MDA-MB-231 

cells (n=3-5, p<0.05) (Fig. 5.6B).  

To validate that MDA-MB-231 cells overexpressing cystatin C were producing 

cystatin C, conditioned media from cystatin C overexpressing MDA-MB-231 cells was 

collected and immunoblotted for cystatin C using Western blot techniques. Cystatin C 

protein was upregulated compared to all of the control MDA-MB-231 cells (Fig. 5.6C). 

Cystatin B protein was also increased in the MDA-MB-231 cells overexpressing cystatin 

B while none was detected in any of the controls confirming cystatin B overexpression 

(Fig. 5.9C). To determine the contribution of gelatinase degradation due to either 

cathepsins or MMPs, the cells were incubated with either 5 µM E-64 or 5 µM E-64d, the 

cathepsin small molecule inhibitors, or 20 µM GM6001, the broad spectrum MMP small 
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molecule inhibitor, along with DQ-gelatin for 24 hours. This concentration of E-64 and 

E-64d was less than what was used in Chapter 4 in order to prevent cellular uptake of the 

small molecule inhibitors and solely inhibit extracellular proteases. Neither the cathepsin 

or MMP small molecule inhibitors were able to significantly reduce the amount of 

gelatinase activity after 24 hours from the cystatin overexpressing cells or the controls 

(n=5-8) (Fig. 5.6D). This suggests that either cathepsin or MMP activity was not 

contributing to the gelatin degradation since the inhibitors did not affect substrate 

degradation, or alternatively, during the incubation period an increase in the amount of 

secreted active cathepsins or MMPs occurred in response to the inhibitor stimulation to 

compensate for the cathepsin inhibition. 

 

 

Figure 5.6: Breast cancer cells with cystatins C and B increase cancer cell invasion 

and gelatin degradation. (A) A 0.5mg/ml collagen gel was polymerized on RFP-labeled 

MDA-MB-231 breast cancer cells overexpressing cystatin C or cystatin B and incubated 

for 24 hrs. After the incubation, cell invasion into the collagen gel was determined using 

confocal imaging. Representative images of the cells were obtained using confocal 

microscopy. (B) Cystatin C, cystatin B, or control MDA-MB-231 cells were incubated with 

DQ-gelatin for 24 hours and the amount of gelatin degradation quantified using 
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spectroscopy. (C) Equal amounts of cell lysates of MDA-MB-231 cells overexpressing 

cystatin C or B or controls were loaded for immunoblotting analysis. (D) Cystatin C 

overexpressing, cystatin B overexpressing, or control MDA-MB-231 cells were incubated 

with DQ-gelatin with or without E-64, E-64d, or GM-6001 for 24 hours and the amount of 

gelatin degradation quantified using spectroscopy. 

 

Since compensation mechanisms could be occurring with cathepsin and MMP 

inhibitors to maintain gelatinase degradation, MDA-MB-231 cells were transfected to 

overexpress either cystatin C, cystatin B, or a control to test the hypothesis that the 

amount of secreted cathepsins was increased due to cystatin overexpression. After 24 

hours, conditioned media was collected, concentrated, and equal volumes were loaded for 

multiplex cathepsin zymography or MMP zymography. The amount of secreted active 

cathepsin S did not differ between cells overexpressing cystatin C or B compared to the 

transfection controls (n=3) (Fig. 5.7A). There was also no difference in the amount of 

secreted cathepsin V. Even though the total amount of secreted cathepsins did not change 

after 24 hours, MMP zymography was ran on the conditioned media to determine if the 

amount of secreted MMPs was altered with cystatin overexpression. Similar to the 

secreted cathepsins, the cystatin overexpression did not cause any changes in the amount 

of pro or mature MMP-2 or MMP-9 as detected by MMP zymography (Fig. 5.7A). 

Cathepsins S and cathepsin L were incubated with increasing amounts of recombinant 

cystatin C to test the hypothesis that cystatin C remains bound to cathepsins and decrease 

the active cathepsin signal as detected by the multiplex cathepsin zymography. The 

samples were then loaded for multiplex cathepsin zymography and Western blot. The 

zymography signal from cathepsin S decreased 90% while the cathepsin L signal was 

reduced by 26% when incubated with cystatin C at a 1:5 ratio (Fig. 5.7B). This indicates 

that the interactions between the cathepsins S or L and cystatin C proteins remain intact 
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and the reduction in the active cathepsin signal seen in the zymography of the 

conditioned media could have been due to the inhibition and sustained binding between 

the cathepsins and cystatin C. 

Although the secreted active cathepsins amounts was not affected by cystatin C or B 

overexpression, MDA-MB-231 cells overexpressing cystatin C or B were incubated with 

5 µM E-64, 5 µM E-64d, or 20 µM GM6001 for 24 hours to ascertain if addition of the 

small molecule inhibitors would inhibit the secreted cathepsins or MMPs. Neither E-64 

nor E64d was able to decrease the amount of active secreted cathepsins L or V. GM6001, 

the MMP inhibitor, also had no effect on the amount of secreted MMP-2 or MMP-9 (Fig. 

5.7C). 
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Figure 5.7. Cystatin C overexpression does not change the amount of secreted 

cathepsins. (A) MDA-MB-231 cells were transfected to overexpress cystatin C, cystatin 

B, or a control. After 24 hours the conditioned media was collected, concentrated, and 

assayed using cathepsin and MMP zymography. (B) Recombinant cathepsin S and 

cathepsin L protein was incubated with increasing amounts of cystatin C protein for 1 hour, 

followed by multiplex cathepsin zymography and Western blot analysis. (C) Conditioned 

media of MDA-MB-231 cells transfected with cystatin C or B plasmids and treated with 

the cathepsin inhibitors E64, E64d, the MMP inhibitor GM6001 (GM), or a control (Veh) 

was collected and assayed using cathepsin or MMP zymography. NP, no plasmid, CMV, 

CMV promoter. 

 

Albeit, neither overexpression of cystatin C or B nor the addition of small molecule 

inhibitors affected the amount of secreted cathepsins after 24 hours, it was hypothesized 

that this was due to changes in the amount of intracellular cathepsins that could be 

targeted for secretion. Since cystatin C is a more potent cathepsin inhibitor [12], the 

following studies focused on the effect of cystatin C overexpression. To test this 

hypothesis, MDA-MB-231 cells were transfected to overexpress cystatin C or a control 

followed by incubation with 50 µM E-64 or 50 µM E-64d for 24 hours. A higher 
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concentration was used compared to the previous experiments to ensure that the small 

molecule inhibitors were taken up by the cells. Overexpression of cystatin C increased 

the amount of active cathepsin S compared to the empty vector control (n=3, p < 0.05) 

(Fig. 5.8A). This was in contrast with the secreted cathepsins (Fig. 5.8A) which did not 

change due to cystatin C overexpression. Not only cystatin C overexpression, but 

incubation with 50 µM of the small molecule E-64 increased the amount of active 

cathepsin S to the same amount detected when overexpressing cystatin C. Cathepsin L 

was only decreased with E-64 incubation and not with cystatin C overexpression (n=3) 

(Fig. 5.8A). This suggests that cystatin C overexpression elevated the total amount of 

intracellular active cathepsin S, but not the secreted amounts. In addition, E-64d 

incubation caused active cathepsin S elevation along with active cathepsin L reduction. 

To determine if cathepsin S mRNA expression was upregulated with the elevation in 

cathepsin S due to cystatin overexpression, MDA-MB-231 cells were transfected to 

overexpress cystatin C or cystatin B. After 24 hours, the cells were lysed and quantitative 

real-time RT-PCR was conducted to measure the amount of cathepsin S mRNA. 

Overexpressing cystatin B significantly elevated cathepsin S mRNA expression compared 

to the control cells (n=3, p<0.05) (Fig. 5.8B). MDA-MB-231 cells overexpressing cystatin 

C did not significantly upregulate cathepsin S mRNA (n=3, p=0.22) (Fig. 5.8B). This 

suggests that cystatin C overexpression did not increase active cathepsin S levels due to 

increased cathepsin S transcriptional regulation. 

Since cystatin C and cathepsin S co-localized after cystatin C treatment (Fig. 4.4), 

MDA-MB-231 cells overexpressing cystatin C were incubated for 24 hours, fixed, 

immunostained for cathepsin S, cathepsin L, or Cystatin C, and imaged using confocal 
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microscopy to test the hypothesis that overexpressed cystatin C protein would co-localize 

with cathepsin S and not with cathepsin L. In representative confocal images of MDA-

MB-231 cells overexpressing cystatin C, cathepsin S and cystatin C were co-localized, 

compared to the lack of co-localization found in the control cells. Cathepsin L was not 

co-localized with cystatin C in the cystatin C overexpressing cells or the controls (Fig. 

5.8C). 

 

Figure 5.8. Intracellular active cathepsin S elevation occurs with cystatin C 

overexpression. (A) MDA-MB-231 cells were transfected with either an empty vector or 

cystatin C plasmids followed by incubation with E-64 or E-64d for 24 hours. After 24 

hours, the cells were lysed, equal amounts of protein were loaded for multiplex cathepsin 

zymography with a pH6 or pH4 assay buffer, and the active cathepsin bands were 

quantified using ImageJ. The amount of active cathepsin S in the cystatin C transfected 

cells increased compared to the CMV plasmid control (n=3, p < 0.05). (B) MDA-MB-231 

cells overexpressing cystatin C, cystatin B, or a control were lysed and cathepsin S mRNA 

expression quantified with qRT-PCR (n=4). (C) MDA-MB-231 cells were transfected with 

either an empty vector plasmid or plasmid containing cystatin C for 24 hours. The cells 

were fixed and stained for cathepsin S (Alexa Fluor® 488, green), cathepsin L (Alexa 

Fluor® 488, green), or cystatin C (Alexa Fluor® 568, red). Bars, 50 µM. 
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5.4  Discussion 

Cathepsins have been linked to cancer progression and overexpression of cystatins, 

including cystatin C, reduced primary tumor volume and metastasis in mice. [7, 10, 11]. 

Our results have demonstrated overexpression of cystatin C not only elevates the amount 

of intracellular active cathepsin S, but also increases human MDA-MB-231 breast cancer 

cell invasion and gelatinase activity. This was validated with E-64 which elevated 

intracellular active cathepsin S in human mammary non-cancerous tissue, MDA-MB-231 

human breast cancer cells, and THP-1 human macrophages. This unexpected finding is 

also seen in data published in the British Journal of Clinical Pharmacology during 

November 2014 from a clinical trial that detected an increase in cathepsin S activity and 

protein mass in the plasma of healthy patients a few days after treatment with the 

cathepsin S inhibitor LY3000328 [133]. This inhibitor-induced upregulation of cathepsin 

S appears to be specific to human, and not murine, cells and tissues. This study also used 

murine cells and tissues to investigate the effects of the cathepsin inhibitor E-64 on 

macrophages and mammary fat pads. Interestingly, the cathepsin inhibitor did not change 

the amount of active cathepsin S in the murine macrophages and mammary fat pad, 

which does not contain an orthologue to the human cathepsin L. All of this suggests that 

human cathepsin L is involved with regulating the inhibitor-induced cathepsin S 

upregulation and highlights the importance of interpreting in vivo mouse model studies 

and clinical trials using mice since mice do not express the orthologue to human 

cathepsin L. In addition, this work demonstrates a cathepsin inhibitor response which 

elevates the amount of the target cathepsin. This will provide insight into understanding 

how perturbations due to inhibition within a proteolytic network can effect individual 
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cathepsins which could lead to increased invasion or metastasis. This knowledge can help 

guide the development and optimization of cathepsin inhibitors for therapeutic usage. 

This study demonstrates that even in non-cancerous tissue, the broad spectrum 

cysteine cathepsin inhibitor is capable of reducing active cathepsin L while elevating the 

amount of active cathepsin S, although the cancer tissue does not exhibit the inhibitor-

induced feedback. The upregulation of active cathepsin S due to E-64 is dependent on the 

aggressiveness of the epithelial cancer cell. The triple-negative MDA-MB-231 breast 

cancer cells were the only epithelial cell line with a significant increase in active 

cathepsin S due to E-64 treatment compared to the ER-positive MCF-7 cells and the non-

transformed MCF-10A cells. This could be due in part to the differences in initial 

baseline amounts of active cathepsins indicating that the upregulation of cathepsin S in 

response to the inhibitor correlates with the amount of active cathepsins and the 

aggression of the cell type. Similar to some of the other triple negative cells lines HCC38, 

HCC 1395, and HCC 1806; the MDA-MB-231 cells had detectable amounts of 

cathepsins S, L, and V, while cathepsin S was the only detectable cathepsin in the 

estrogen-positive MCF-7 cells (Fig. 5.2). In addition, there is patient variability with 

cathepsin proteolytic profiles from human macrophages isolated from peripheral blood 

mononuclear cells [185]. This is important to note since macrophages invade breast 

tumors and promote tumor invasion. It has also been reported that the cathepsin 

proteolytic profile of breast and lung tumors can vary depending on the cancer stage [9]. 

Thus characterization of baseline cathepsin levels in breast tissue prior to treatment is 

important in order to understand how a cell or tissue might respond to cathepsin inhibitor 

treatments. The inhibitor-induced cathepsin S upregulation did not occur in the cancerous 
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tissue, suggesting that this could be due to the tumor-associated cells within the tumor or 

due to emergent behaviors that occur with biochemical or biophysical signaling between 

tumor and tumor-associated cells. We demonstrated here that a feedback mechanism 

within the proteolytic network upon broad-spectrum inhibition of cysteine cathepsins in 

breast cancer cells elevates the amount of intracellular active cathepsin S. Since this 

upregulation is due to cysteine cathepsin inhibitor treatments, it suggests that the 

elevation of cathepsin S could be due to cellular mechanisms compensating for inhibition 

of other members in the cysteine cathepsin family. Interestingly, the amount of secreted 

cathepsins remained the same unlike the intracellular cathepsins. This could be accounted 

by an upregulation in secretion of intracellular cathepsins to compensate for inhibition of 

extracellular cathepsins although further investigation would need to be conducted to 

validate. This could also suggest the mechanism behind the increased invasion and 

gelatinase activity with cystatin C overexpression. 

All of this, along with the reports of compensatory responses in cathepsin knockout 

mouse models [60, 113-115, 171], suggests the use of cathepsin inhibitors for therapeutic 

uses. However, the use of cysteine protease inhibitors will need to be further studied 

since we have clearly shown here that the broad inhibitors E-64- and cystatin C-induced 

cellular feedback upregulates the active cathepsin S protein. This could have negative 

physiological consequences since cathepsin S is known to have specific cellular functions 

[75, 140, 181, 186, 187]. 

It was also demonstrated here that using the broad spectrum inhibitor E-64 

upregulated the pro-form of cathepsin L. Jung et al and colleagues also used the broad-

spectrum intracellular cathepsin inhibitor E-64d, and reported an increase in pro-



www.manaraa.com

 81 

cathepsins L, B, and D protein and suggested this was due to impaired processing of 

cathepsins. This, in turn, resulted in lysosomal dysfunction [188]. This is important since 

signaling between lysosomes and the nucleus, which occurs due to nuclear translocation 

of Transcription Factor EB (TFEB) from lysosomes, regulates lysosomal biogenesis [189, 

190]. Inhibition of active cathepsin L due to E-64 treatment could result in reduced 

autocatalytic activation of pro-cathepsin L into the mature form or the activation of other 

cathepsins activated or regulated by the mature cathepsin L. This is especially critical for 

cathepsin S since this study was able to show the involvement of cathepsin L in cathepsin 

S regulation. It was also seen that both the pro- and mature forms of cathepsin S were 

upregulated, this indicates that activation of cathepsin S into the mature form was still 

occurring, but suggests an increase in production. This was the first report of cathepsin L 

involvement of cathepsin S regulation between cathepsins S and highlights the 

importance of maintaining proteolytic homeostasis between the two proteases especially 

when using therapeutic cathepsin inhibitors to prevent substrate degradation and 

invasion. 

  

5.5  Conclusion 

These results demonstrate an inhibitor-induced feedback that occurs upon cathepsin 

inhibition and one molecular mechanisms regulating the cellular feedback response. This 

response between inhibition and cathepsin proteolytic activity appears to be an attempt to 

maintain a proteolytic homoeostasis. Not only are these findings important for 

understanding and preventing breast cancer metastasis, but also for other diseases such as 

HIV, atherosclerosis, and osteoporosis where these proteases are upregulated and 

highlights a need to understand cathepsin interactions in a proteolytic network. 
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 CHAPTER 6 

Future Considerations 

6.1  Major Findings 

The work presented in this thesis focused on addressing the issues accompanied with the 

use of cysteine cathepsin therapies in breast cancer. While cathepsins are upregulated in 

cancer and are potential candidates for breast cancer therapies, adverse side effects 

occurred with cathepsin protease inhibitor therapies. Although cathepsin inhibitor 

therapies have been efficacious in inhibiting cathepsins and stopping the progression of 

the disease, both the off target effects and the upregulation in active cathepsins due to 

compensatory networks complicate the development and use of cathepsin inhibitors. This 

work elucidated the cellular response of cathepsins due to broad spectrum cysteine 

cathepsin inhibitors in breast cancer using small molecule or protein cathepsin inhibitors 

in human cells and tissues. This could assist with the development of more effective 

cathepsin inhibitors for cancer therapies, as well as provide insight for proper therapeutic 

dosing options. Pharmaceutical cathepsin inhibitors being developed are designed to be 

highly selective for a specific protease such as cathepsin S or cathepsin K [13, 24, 215]. 

Selectively targeting one cathepsin may help reduce some of the feedback that is 

occurring with the broad spectrum cathepsin inhibitors. All of this points to a 

compensatory mechanism that is induced in an attempt to maintain proteolytic 

homoeostasis. This is critical for developing effective therapeutics and dosing strategies 

for cancer invasion and metastasis since high doses of cathepsin inhibitor would increase 

cathepsin activity while low doses would be more effective at inhibiting cathepsins. In 

addition, although some cathepsin inhibitors have been designed to not passively cross 
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the cellular membrane, uptake of the inhibitor could still occur due to pinocytosis or 

endocytosis. Since the cellular uptake of cystatin C was correlated with elevated active 

cathepsin S, it is important that proper dosing strategies are considered to lower the 

pericellular concentration of the inhibitor and prevent uptake of the inhibitor due to 

pinocytosis. As this work has demonstrated, high doses of cathepsin inhibitor could 

potentially increase cancer cell invasion. Use of lower doses that prevent internalization 

of the inhibitor would be more effective at inhibiting invasion. 

The work in this thesis suggest that the upregulation of cathepsin S due to cathepsin 

inhibitors is due to post-transcriptional regulation such as increased activation. The 

increased active cathepsin is probably not due to the inhibitor acting as an agonist since 

cystatin C and E-64 form near irreversible or irreversible bonds, respectively, at the 

active site of the cysteine cathepsins [106] and the inhibitors have not been shown to 

interact with any other sites on the cathepsin protein structures. 

In order to develop a multiplex cathepsin zymography assay that can selectively 

distinguish multiple cathepsins, cathepsin specific pH and substrate modifications were 

made [154]. While previous studies established the detection of cathepsin K activity by 

cathepsin zymography at femtomole quantities [124], this study developed tools to 

selectively detect cathepsins K, L, S, and V activity from one cell extract or preparation 

was established. This technique has many benefits: 1) it does not require antibodies 

making it relatively inexpensive and species-independent, 2) separation of proteins by 

molecular mass and electrophoretic migration visually confirm enzyme identity, 3) 

densitometry can be used for quantitative analysis, and 4) pH change can confirm specific 

cathepsin activity. In addition, the broad application of these tools allows use in basic 
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science research and for clinical purposes involving cathepsin-mediated tissue 

remodeling. It is medium throughput and inexpensive protocol with widespread utility 

that can be used in a variety of settings.  

Elucidating cellular feedback mechanisms between cathepsins and inhibition is 

important when studying tissue remodeling in physiology and pathophysiology. 

However, little is known about the cellular feedback mechanisms that initiate cathepsin 

production and activation and its effect on proteolytic matrix degradation. This work has 

effectively shown that both small molecule inhibitors and protein cathepsin inhibitors 

cause cellular responses in human epithelial cancer cells and macrophages which elevate 

intracellular active cathepsin S. This response was due to preferential localization of the 

inhibitor to cathepsin S and not to other proteases such as cathepsin L, which was located 

in the cytoplasm. Trafficking of the inhibitor to endo-lysosomal vesicles could prevent 

degradation of lysosomal macromolecules and cargo proteins. Mutation or inactivation of 

lysosomal proteases has been shown to lead to lysosomal storage diseases [216]. These 

results suggest that cellular preventative measures such as the upregulation of other 

lysosomal proteases, i.e. cathepsin S, are taken to ensure degradation of lysosomal cargo 

during inhibitor treatments. While the specific mechanisms causing this feedback are yet 

to be determined, it is known that signaling between lysosomes and the nucleus regulates 

lysosomal biogenesis due to nuclear translocation of Transcription Factor EB (TFEB) 

from lysosome membrane [189, 190].  

Since the inhibitor feedback was seen to be due in part to cathepsin L expression, it is 

important to study cellular feedbacks that are occurring with cathepsin inhibitor 

treatments in other diseases and not just for breast cancers especially since cathepsin L is 
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ubiquitously expressed in different cells and tissues. Cathepsin L usually has a higher 

binding rate to cathepsin inhibitors compared to other cysteine proteases [12, 162] and off 

target binding of cathepsin L could induce this cellular feedback. This could also explain 

why a cathepsin S inhibitor caused increased cathepsin S protein in activity in healthy 

subjects [133]. Although cathepsin L is a lysosomal cysteine protease, it was detected in 

the cytoplasm of the breast cancer cells where it has functional roles such as cleavage of 

the GTPase dynamin which results in cytoskeleton reorganization [109], cleavage of the 

CCAAT-displacement protein/cut homeobox transcription factor [108, 163], and 

cleavage and modification of histones [164, 165]. Elevation of active cathepsin S due to 

E-64 occurred in non-cancerous breast tissue, but not cancer tissue. Even though the 

cathepsin S upregulation did not occur in the cancerous tissue, this indicates that the 

tumor-associated cells within the tumor may not have this inhibitor-induced feedback 

response or emergent behaviors could occur between tumor and tumor-associated cells 

due to biochemical or biophysical signaling. The feedback response was dependent on 

the type of epithelial cancer cell since it did not occur in the non-transformed MCF-10A, 

but was prominent in the triple negative MDA-MB-231 cells, the most aggressive form of 

breast cancer [37]. This suggests that this differential response could be due to 

differences in the amount of cathepsins or due to the aggressive phenotype with each cell 

type within the individual tissues and highlights the tissue-dependency of this inhibitor-

induced response. This could be due in part to the differences in initial baseline amounts 

of active cathepsins indicating that the upregulation of cathepsin S in response to the 

inhibitor correlates with the amount of active cathepsins and the aggression of the cell 

type. Epithelial cells were not the only cells that had the inhibitor-induced cathepsin S 



www.manaraa.com

 87 

elevation, but it was also detected in human macrophages. This could be critical when 

using cathepsin inhibitors for cancer therapies since the inhibitor-induced cathepsin 

upregulation occurred in cancer cells and macrophages such as TAMs, which can account 

for 50% of tumor volume [13, 59]. Thus characterization of baseline cathepsin levels in 

breast tissue prior to treatment is important in order to understand how a cell or tissue 

might respond to cathepsin inhibitor treatments.  

In addition, breast cancer cell invasion and gelatinase activity was increased due to 

overexpression of the cathepsin inhibitor cystatin C. The inhibitor overexpression also 

upregulated intracellular active cathepsin S. In this study the cellular invasion that 

occurred due to inhibition was associated with elevated substrate degradation suggesting 

protease-mediated cellular invasion.  

 

6.2   Development of multiplex cathepsin zymography 

This work has shown the use of multiplex cathepsin zymography with various cells and 

tissues and a different of types of diseases. This is important since cathepsins are 

upregulated in many diseases in which tissue remodeling occurs including cancer, bone 

metastasis [13, 15-17], cardiovascular disease[2, 73-75], and other diseases associated 

with elastinolytic remodeling [79]. Not only can this tool be used to study multiple 

diseases but can study multiple cathepsins using one assay. This has limited previous 

studies investigating cathepsins. With this platform, cathepsins K, L, S, and V can all be 

studied concurrently which is significant when studying these proteases as a system 

especially since this group of four cathepsins includes the most potent collagenase, the 

most potent elastase, and a ubiquitously expressed cathepsin. Using these tools has 
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potential use clinically as a diagnostic tool to detect diseased tissues due to its sensitivity 

and specificity [9]. This also can be used in low resource settings due to its affordability. 

6.3 Understanding compensatory networks 

This report revealed compensatory mechanisms that upregulate cathepsin S during broad 

spectrum cathepsin inhibition in human breast tissue, breast cancer cells, and 

macrophages. This is supported by other reports that have shown that double deletion of 

cathepsins S and B, causes an upregulation of cathepsin Z demonstrating compensatory 

mechanisms that occur in the tumor microenvironment [113]. Compensatory mechanisms 

which upregulate cathepsins can also occur in single cathepsin knockout models [60, 114, 

115].  

The work here that identifies inhibitor-induced upregulation of cathepsins and 

possible mechanisms could be extended to other protease families such as MMPs, serine, 

and aspartic proteases, especially since substrate promiscuity, activation, and degradation 

occurs within each of these families similar to that in the cysteine proteases. The findings 

of this work could also be extended to study how proteases in one family affects other 

proteases in other families. Protease activation between protease families has already 

been shown [217] which suggests that inhibition within one network could affect other 

protease families. 

This work has highlighted the regulation of cathepsin S due to cathepsin L inhibition 

or expression. While this response was primarily shown in epithelial cancer cells, it was 

not specific to epithelial cancer cells but also occurred in macrophages. Both the MDA-

MB-231 breast cancer cells and THP-1 macrophages used in this report expressed 

multiple cathepsins including cathepsins S and L. This suggests that the inhibitor-induced 
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response may occur in high cathepsin producing cells such as invasive cancers or in cells 

expressing cathepsin L, which is ubiquitously expressed. 

The cathepsin proteolytic network contains 11 proteases, but the expression and 

activity of individual cathepsins depends on the cell and tissue type. Due to such 

variation, there has been a large focus on investigating the effect of single proteases on 

substrate cleavage. This has made it difficult to investigate the dynamics and interactions 

among proteases within the cathepsin proteolytic network and its overall effect on matrix 

degradation. Previously, our lab has examined and modeled cathepsin S and cathepsin K 

interactions and its effect on collagen degradation [181]. This model can be expanded to 

include cystatins, MMPs, and tissue inhibitor of MMPs (TIMPs) and their subsequent 

interactions. An ordinary differential equations based computational model can be 

developed to better understand the interactions and dynamics within the cathepsin 

proteolytic network. Ultimately, the information in this study will play an important role 

in the potential development of a model that can be used to better understand 

relationships between the cathepsin proteases and their inhibitors. This model could help 

discover other compensatory mechanisms that would have consequences on substrate 

degradation in matrix-remodeling diseases such as atherosclerosis, osteoporosis, and 

metastatic cancers. 
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APPENDIX A 

 

Uncovering breast cancer mediated ECM remodeling and 

paracrine signaling effects on mesenchymal stem cell 

differentiation and cancer cell survival 

 

A.1  Introduction 

With a dismal five year survival rate of 26% for patients with metastatic breast cancer 

tumors there is a critical need for more research focused on prevention and treatment of 

metastases [28]. In order to develop therapies for cancer metastasis, a better 

understanding of biochemical signaling between cancer cells and cells within the 

surrounding metastatic microenvironment is essential. Bone is the 5th most common 

metastatic site in breast cancer patients accounting for ~9.5% of the metastatic sites 

[191]. Bone metastatic breast cancers tend to form osteolytic lesions as a result of 

osteoclast stimulation [192, 193] and result in a higher risk of fractures due to brittle bone 

[194].However, when cancer cells arrive in the bone marrow niche they begin to interact 

with and influence native bone marrow cells [195, 196] including mesenchymal stem 

cells (MSCs), which differentiate into either osteoblasts, adipocytes, or chondrocytes 

depending on the biochemical and biophysical signals [197-199]. More studies need to be 

conducted to understand the effect of breasts cancer cells on MSCs’ differentiation into 

osteoblasts or adipocytes. 
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Osteoblasts synthesize collagen to promote bone formation in response to osteoclast 

bone resorption [200, 201]. When there is an imbalance in bone remodeling skeletal 

disorders such as osteoporosis occurs [200]. Metastatic prostate cancer cells, which form 

osteoblastic lesions, induce osteogenesis in MSCs [196]. It was previously suggested that 

bone diseases such as osteoporosis are associated with adiposity [202]. 

Cysteine cathepsins K and S are involved with adipocyte differentiation [136, 203]. In 

2007, Yang et al showed that the protease mouse cathepsin L, which is orthologous to 

human cathepsin V, controls adipogenesis in mice through fibronectin degradation, 

demonstrating that proteolysis is linked to adipocyte differentiation[135]. Investigating 

cathepsin activity is important since their expression and activity is upregulated in breast 

cancer [5, 6, 82]. Cathepsins degrade extracellular matrix (ECM) proteins including type 

I collagen[3], an important matrix protein for osteogenic differentiation [204, 205]. 

There is a need to understand how breast cancer cells subvert and alter the bone 

microenvironment to promote their own survival. It is important to investigate how breast 

cancer cells affect MSC differentiation and cathepsin expression in order to understand 

their role in promoting osteolytic lesions. Due to all of this it was hypothesized that 

metastatic breast cancer cells would cause preferential differentiation of MSCs toward an 

adipogenic lineage. 

A.2  Materials and Methods 

A.2.1 Cell Culture 

Human MSCs (hMSCs) (Obtained from Tulane University) were cultured in complete 

culture medium consisting of Minimum Essential Medium, Alpha 1X (Corning Cellgro) 

supplemented with 16.5% fetal bovine serum (FBS) – Premium Select (Atlanta 
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Biologicals), 1% L-glutamine (Life Technologies), and 1% penicillin/streptomycin (Life 

Technologies). The osteogenic differentiation media contained the complete culture 

medium with 10 nM dexamethasone, 20 mM β-glycerolphosphate, and 50 μM L-ascorbic 

acid 2-phosphate. The adipogenic differentiation media contained the complete culture 

medium with 0.5 μM dexamethasone, 0.5 mM isobutylmethylxanthine, and 50 μM 

indomethacin. The MSCs were differentiated for 6 to 21 days in either complete culture, 

osteogenic, or adipogenic induction media with media replaced with fresh media every 

three days. Human MSCs were co-cultured in either complete culture, osteogenic, or 

adipogenic induction media directly with or without RFP labeled MDA-MB-231 breast 

cancer cells, GFP labeled MCF-7 breast cancer cells, or non-tumorigenic MCF-10A 

epithelial cells. In addition, hMSCs were co-cultured indirectly with either MDA-MB-

231, MCF-7, or MCF-10A cells in either complete culture, osteogenic, or adipogenic 

induction media using a 0.2 µm pore sized membrane or conditioned media from the 

above mentioned tumorigenic and non-tumorigenic epithelial cells. Only passage four to 

six hMSCs were used in these studies. 

A.2.2 Multiplex Cathepsin Zymography 

Tissue and cell lysates or conditioned media was collected after a specified incubation 

duration. Total protein amounts in the cell lysates were determined using the Pierce 

Micro BCA Protein Assay (Thermo Scientific) and prepared as previously described 

[124]. The conditioned media was concentrated using VivaSpin 500 concentrators 

(Sartorius Stedim Biotech GmbH) and the same amount of volume per sample was 

loaded. The cell lysates and conditioned media were assayed as previously described, but 

briefly, equal amounts of protein or volume were loaded in gelatin embedded 
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polyacrylamide gels to separate the protein using SDS-PAGE techniques [154]. The gel 

was washed in renaturing buffer and assay buffer followed by staining with a Coomassie 

blue stain and destain. The gel was then imaged using an ImageQuant LAS 4000 (GE 

Healthcare Life Sciences). The bands were then quantified using ImageJ. 

A.2.3 Western Blots 

Cell lysates or conditioned media was collected after a specified incubation duration. 

Total protein amounts in the cell lysates were determined using the Pierce Micro BCA 

Protein Assay (Thermo Scientific). The conditioned media was concentrated using 

VivaSpin 500 concentrators (Sartorius Stedim Biotech GmbH) and the same amount of 

volume per sample was loaded. The cell lysates and conditioned media were assayed as 

previously described, but briefly, equal amounts of protein or volume were loaded in 

gelatin embedded polyacrylamide gels to separate the protein using SDS-PAGE 

techniques. Protein was transferred to a nitrocellulose membrane (Bio-Rad) and proteins 

were then probed with primary antibodies overnight at 4°C followed by an hour 

secondary antibody incubation. 

A.2.4 Osteogenic and adipogenic differentiation assays 

Osteogenic differentiation was measured using an alkaline phosphatase assay. Briefly, 

cells were rinsed with phosphate buffer saline (PBS) and cells were lysed with 0.2% NP-

40 lysis buffer in 1 mmol/L MgCl2. Lysates were collected and incubated with a 1:1 

solution of the substrate p-Nitrophenyl phosphate and 221 Alkaline Buffer Solution for 

30 minutes at 37°C. The reaction was stopped using 1N NaOH. Absorbance was 

measured using spectroscopy. Adipogenic differentiation was measured by rinsing cells 

with PBS and staining with 0.3% Oil Red-O (made fresh) for 20 minutes at room 
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temperature to detect the fat lipid droplets. The cells were rinsed with PBS and imaged 

using microscopy. The dye was then extracted with isopropanol and the absorbance of the 

Oil Red-O dye was quantified using spectroscopy. 

A.2.5 Quantitative real time PCR 

Human MSCs were cultured in expansion, osteogenic, or adipogenic induction media and 

were co-cultured with or without breast cancer cells. Cells were lysed and RNA isolated 

using the RNeasy Mini Kit (Qiagen). The RNA was reversed transcribed using 

SuperScript™ III Reverse Transcriptase (Invitrogen) and cDNA was amplified using 

SYBR® Green PCR Master Mix (Applied Biosystems) and primer sequences for 

osteogenic factors such as runt-related transcription factor 2 (RUNX2), and alkaline 

phosphatase (Alk Phos); adipogenic factors such as lipoprotein lipase (LPL) and 

peroxisome proliferator-activated receptor gamma (PPAR-γ); or the housekeeping control 

GAPDH. 

A.2.6.  Flow Cytometry 

Human MSCs co-cultured indirectly with either MDA-MB-231, MCF-7, or MCF-10A 

cells in either complete culture, osteogenic, or adipogenic induction media using a 0.2 

µm pore sized membrane. The hMSCs were collected using trypsinization and the cell 

pellet was resuspended in 0.5 mL PBS with 5 µL of a 50 µg/ml 7-AAD (Biolegend) and 

5 µL FITC Annexin V (BD PharmingenTM) per million cells and incubated for 15 

minutes at room temperature in the dark before analysis. The cells were then strained into 

a round bottom polystyrene tube and analyzed using BD LSR II Flow Cytometer. 
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A.3  Results 

A.3.1 Adhesion of osteogenic hMSCs is disrupted during heterotypic 
culture with breast cancer cells  

To test if triple-negative MDA-MB-231 breast cancer cells or estrogen-positive MCF-7 

breast cancer cells affect hMSC differentiation due to cell-cell interactions, hMSCs were 

differentiated for six days in non-inducing, osteogenic, or adipogenic media. Then either 

RFP tagged MDA-MB-231 cells or GFP tagged MCF-7 cells were added to the culture 

for an additional three or six days of co-culture. The cells were fixed and imaged using 

fluorescent microscopy. After three days of co-culture, both the MDA-MB-231 cells and 

MCF-7 cells were able to form small colonies within the undifferentiated, osteogenic, and 

adipogenic hMSCs. Osteogenic hMSCs appear more rounded, suggesting loss of 

adhesion (Fig. A.1A). This was in contrast to the expansion and adipogenic hMSCs 

which were more spread and were still attached to the culture plate (Fig. A.1A). By day 

six of the co-culture, the amount of MDA-MB-231 or MCF-7 cells had increased in the 

co-cultures containing control and adipogenic hMSCs. In the osteogenic co-cultures, the 

cells had become detached (Fig. A.1B). This occurred with both the triple-negative 

MDA-MB-231 and estrogen-positive MCF-7 cells. 
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Figure A.1. Cell rounding and detachment increases when breast cancer cells are in 

direct contact with osteogenic hMSCs. (A) Human MSCs were cultured in non-inducing, 

osteogenic, or adipogenic media for 6 days. RFP-labeled MDA-MB-231 or GFP-labeled 

MCF-7 breast cancer cells were seeded directly on the hMSCs and cultured for an 

additional 3 (B) or 6 days. The location of the cancer cells in relation to the hMSCs was 

then determined using fluorescent microscopy. 

 

A.3.2 Breast cancer cell paracrine signaling reduces osteogenic 
differentiation and causes rounded and spindle-like hMSCs 

To determine if the cell rounding and detachment that occurred in the osteogenic hMSCs 

cultured with breast cancer cells was influenced by paracrine signaling, hMSCs were 

differentiated in osteogenic or control media for six days. To assess the effects of 

paracrine communication between the cancer cells and hMSCs, MDA-MB-231, MCF-7, 

or MCF-10A cells were cultured on the apical side of a 0.2 µm pore sized transwell for 

six days. MDA-MB-231 secreted factors increased the amount of rounded MSCs 

compared to the cell spread morphology that was detected due to secreted factors of 
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MCF-10A cells or the hMSCs only control. The same changes in hMSC morphology was 

observed in the MCF-7 transwell co-culture (Fig. 6.2A). Paracrine signaling from the 

MDA-MB-231 or MCF-7 cells caused more spindle like projections in the osteogenic 

hMSCs compared to the controls (Fig. A.2A).  

 

Both the paracrine factors from either MDA-MB-231 or MCF-7 cells were decreasing the 

spread and affecting the morphology of hMSCs. Cell shape has been reported to 

influence MSC differentiation down an osteogenic and adipogenic lineage [206]. Due to 

this osteogenic differentiation was measured in the breast cancer and MSC co-cultures to 

test the hypothesis that hMSC osteogenic differentiation was decreased with the breast 

cancer cell co-cultures. hMSCs were cultured in osteogenic or control media for six days 

followed by co-culture with either MDA-MB-231, MCF-7, MCF-10A transwells or a 

non-transwell control for and additional six days. After six days of co-culture, hMSCs 

were lysed and osteogenic differentiation was measured using an alkaline phosphatase 

assay. Alkaline phosphatase activity was significantly decreased in osteogenic hMSCs 

that received biochemical communication from MCF-7 cells compared to the osteogenic 

hMSCs only control (n=3, * p < 0.05) (Fig A.2B). 
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Figure A.2. Human MSCs interacting with breast cancer cells via paracrine signaling 

form spindle like cell morphology and reduce osteogenic differentiation. (A) 

Osteogenic differentiation of hMSCs was induced for six days. Induced or non-induced 

control hMSCs were then incubated with MDA-MB-231 breast cancer cells, MCF-7 breast 

cancer cells, or non-transformed MCF-10A epithelial cells seeded on a 0.2 µm transwell 

membrane for 6 days. The hMSCs were fixed and representative images were obtained 

using microscopy. (B) Cell lysates of the osteogenic and non-induced hMSCs cultured with 

MDA-MB-231 cells, MCF-7 cells, or non-transformed MCF-10A cells on a 0.2 µm 

transwell membrane were collected and the amount of alkaline phosphatase activity was 

quantified by measuring the absorbance of cleaved p-Nitrophenyl phosphate and 

normalized to total protein (n=3, * p < 0.05). 

 

A.3.3 Biochemical signals from breast cancer cells reduces the 
osteogenic marker RUNX2 mRNA expression in differentiating 
hMSCs 

To validate that the hMSCs were differentiating into osteoblasts, hMSCs were cultured in 

osteogenic media for three days and then lysed. Equal amounts of cDNA was loaded for 

quantitative RT-PCR to determine the alkaline phosphatase and RUNX2 mRNA 

expression. Alkaline phosphatase mRNA expression was upregulated after three days of 

differentiation unlike the RUNX2 mRNA expression (n=3, *** p <0.001) (Fig A.3A). 
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Since the biochemical signals from the MCF-7 cells decreased the alkaline 

phosphatase activity (Fig 6.2B), alkaline phosphatase and RUNX2 mRNA expression, 

both markers for osteogenic differentiation, was measured in MSCs cultured with MDA-

MB-231 and MCF-7 cells in transwells to test the hypothesis that osteogenic mRNA 

expression would be reduced due to the indirect interactions. Osteogenic or control 

hMSCs were cultured with MDA-MB-231 or MCF-7 cells on 0.2 µm pore sized 

transwells, with conditioned media from either breast cancer cell, or a control with 

hMSCs alone. After six days of co-culture, RUNX2 mRNA expression in the osteogenic 

hMSCs was decreased due to MCF-7 signaling from the secreted factors from the 

transwell system or the conditioned media (Fig. A.3B). The same was seen in non-

induced control hMSCs cultured with a biochemical cues from the MCF-7 transwell 

system or conditioned media (n=3, * p <0.05). Alkaline phosphatase mRNA expression 

in hMSCs was not changed with any of the culture conditions (n=3). 
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Figure A.3. Breast cancer cells reduce mRNA expression of the late stage osteogenic 

differentiation marker, RUNX2 in hMSCs. (A) Human MSCs were cultured with 

osteogenic induction media for 3 days. Cell lysates were collected and alkaline phosphatase 

and RUNX2 mRNA expression was measured using qRT-PCR (n=3, *** p < 0.001). (B) 

Osteogenic or control hMSCs incubated with MDA-MB-231 breast cancer cells, MCF-7 

breast cancer cells, or non-transformed MCF-10A epithelial cells seeded on a 0.2 µm 

transwell membrane for 6 days were lysed and mRNA expression of alkaline phosphatase 

and RUNX2 quantified with qRT-PCR (n=3, * p < 0.05). 

 

A.3.4 Secreted factors from breast cancer cells reduced the size of 
osteogenic hMSCs 

To test the hypothesis that biochemical communication from breast cancer cells are 

inducing apoptosis in undifferentiated and osteogenic hMSCs, hMSCs were cultured in 

osteogenic or control media for six days. For the following six days, the cells were 

cultured alone or with MDA-MB-231, MCF-7, or MCF-10A cells seeded on 0.2 µm 

transwell inserts. The hMSCs were then collected and sorted using flow activated cell 

sorting (FACS). Different subpopulations of the hMSCs were characterized using a 

scatter plot with side-scattered (SSC), an indicator of cell granularity or internal 
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complexity, vs forward-scattered (FSC), an indicator of cell surface area or size. There 

were two subpopulations detected with both the undifferentiated and osteogenic hMSCs. 

When the hMSCs were cultured alone, 11.9% of hMSCs were found in population 1, 

which had a smaller cell size as indicated by a lower forward-scattered. A second 

population detected, that had a larger forward-scatter, contained 64.2% of hMSCs. The 

number of hMSCs detected in the two populations was similar when the cells were 

cultured with MCF-10A cells. Biochemical factors from MCF-7 cells increased the 

amount of undifferentiated hMSCs in population 2 with a 14% fold increase compared to 

the hMSCs only control. This was in contrast to the hMSCs receiving cues from MDA-

MB-231 cells which had a 22% fold decrease in the number of hMSCs found in the 2nd 

population (Fig. A.4).  

Unlike the undifferentiated hMSCs, the number of osteogenic hMSCs in population 2 

decreased by 38.6% due to biochemical signaling from MCF-7 cells. Albeit, indirect 

communication from MCF-7 cells caused a 353% fold increase in the population 1 

osteogenic hMSCs. With the paracrine factors from MDA-MB-231 cells, while only a 

2.8% fold decrease in the number of osteogenic hMSCs in the 2nd population was 

detected, there was a 96.4% fold increase in the 1st population (Fig. A.4). 
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Figure A.4. The size of hMSCs is decreased due to biochemical factors with breast 

cancer cells. Human MSCs cultured with osteogenic or control media were incubated with 

transwells seeded with MDA-MB-231 breast cancer cells, MCF-7 breast cancer cells, or 

non-transformed MCF-10A epithelial cells. Human MSCs were collected and the size and 

granularity of the cells was determined using FACS. 

 

A.3.5 MDA-MB-231 and MCF-7 cells induce early apoptosis in hMSCs 

Since indirect communication from MDA-MB-231 and MCF-7 breast cancer cells 

increased the number of cells in the 1st population, which has smaller cells as indicated 

with a lower forward-scattered light; undifferentiated and osteogenic hMSCs receiving 

indirect cues from the breast cancer cells were collected and stained for Annexin V, an 

indicator of early apoptosis, and 7AAD, an indicator of late stage apoptosis to test the 

hypothesis that the smaller hMSCs in population 1 were undergoing apoptosis. All of the 

hMSCs in population 1, regardless of culture conditions, had over 65 % Annexin V 

positive staining. MDA-MB-231 biochemical factors caused a 64.9% fold increase in the 

number of undifferentiated hMSCs that were positive for both Annexin V and 7AAD 

compared to the hMSC only control. Interestingly, the estrogen-positive MCF-7 cells 

increased the number of osteogenic hMSCs that were negative for both Annexin V and 

7AAD by 182% (Fig. A.5A). 
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Over 75% of hMSCs in the 2nd population were negative for Annexin V and 7AAD 

regardless of culture condition. Paracrine signaling from MCF-7 cells elevated the 

amount of Annexin V staining in both undifferentiated and osteogenic hMSCs by 384% 

and 315%, respectively. This is in contrast to the MDA-MB-231 paracrine factors which 

elevated the amount of Annexin V staining only in undifferentiated hMSCs with a 632% 

fold increase (Fig. A.5B). 

 

 

Figure A.5. Secreted factors from breast cancer cells upregulated the early marker 

for apoptosis, Annexin V, on the hMSCs. Human MSCs cultured with osteogenic or 

control media were incubated with transwells containing MDA-MB-231 breast cancer 

cells, MCF-7 breast cancer cells, or non-transformed MCF-10A epithelial cells. Two 

populations of hMSCs were identified based on the forward scatter and side scatter. Both 

population 1, which had a smaller forward scatter (A), and population 2 which had a larger 

forward scatter (B), were stained for the apoptotic markers annexin V and 7AAD. 
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A.3.6 Breast cancer cells regulate proteolytic remodeling of the ECM 
to control MSC differentiation 

Osteogenic differentiation is mediated in part due to type I collagen [207-209] which is 

cleaved by the most potent collagenase cathepsin K [3], a protease upregulated in a tumor 

environment [9]. The effects of paracrine factors from cancer cells overexpressing 

cathepsin K on MSC differentiation was investigated to test the hypothesis that 

biochemical factors from breast cancer cells overexpressing cathepsin K and cultured on 

type I collagen could promote osteogenic differentiation of hMSCs. MDA-MB-231 cells 

transfected to overexpress cathepsin K, followed by culture on 0.5 mg/ml collagen for 48 

hours. Conditioned media was then collected, supplemented with 50% fresh media, and 

cultured on hMSCs for an additional 72 hours. Following the incubation, the hMSCs 

were lysed and osteogenic differentiation was quantified by measuring the amount of 

alkaline phosphatase and RUNX2 mRNA expression using qRT-PCR. Conditioned 

media from non-transfected MDA-MB-231 cells cultured with or without collagen 

decreased the amount of alkaline phosphatase mRNA expression detected in hMSCs 

(n=3) (Fig. A.6A). Alkaline phosphatase mRNA expression in hMSCs was upregulated 

with indirect communication from MDA-MB-231 cells overexpressing cathepsin K that 

were cultured on collagen (n=3, p < 0.05). In addition, the effects of collagen increased 

RUNX2 mRNA expression only with MDA-MB-231 cells overexpressing cathepsin K 

(n=3, p < 0.01) (Fig. A.6A). 

To determine if the elevation of alkaline phosphatase mRNA expression in hMSCs 

due to biochemical factors from cathepsin K overexpression in MDA-MB-231 cells was 

mediated by cathepsins, 5 µM E-64 cathepsin inhibitor was incubated with the cathepsin 

K overexpressing and control MDA-MB-231 cells cultured with or without collagen. The 
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amount of alkaline phosphatase mRNA expression was reduced in the hMSCs only when 

E-64 was incubated with cathepsin K overexpressing MDA-MB-231 cells cultured with 

collagen (n=3, p < 0.05) (Fig. A.6B). Incubation of E-64 with MDA-MB-231 cells 

overexpressing cathepsin K cultured with collagen did not change the amount of RUNX2 

mRNA expression in hMSCs (n=3) (Fig. A.6B). 

 

 

Figure A.6. Biochemical factors from MDA-MB-231 cells overexpressing cathepsin K 

and incubated on collagen increased osteogenic differentiation. (A) hMSCs were 

incubated with conditioned media from either cathepsin K overexpressing MDA-MB-231, 

non-transfected MDA-MB-231 cells, or a control cultured on type I collagen gels for 48 

hours. Cell lysates of the hMSCs incubated with or without conditioned media from the 

MDA-MB-231 cells were collected and qRT-PCR was used to determine alkaline 

phosphatase and RUNX2 mRNA expression. (B) Human MSCs were incubated with the 

same conditions with or without E-64 followed by quantification of alkaline phosphatase 

and RUNX2 mRNA expression 

 

 

To validate that overexpression of cathepsin K increased the amount of active 

cathepsin K in MDA-MB-231 cells, the cells overexpressing cathepsin K were lysed and 
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loaded for multiplex cathepsin zymography. The amount of active cathepsin K was 

increased in MDA-MB-231 cells overexpressing cathepsin K compared to the control 

MDA-MB-231 cells (Fig. A.7A). Collagen increased the amount of active cathepsin K in 

the MDA-MB-231 cells overexpressing cathepsin K (Fig. A.7A). This data was 

quantified using ImageJ analysis (Fig. A.7B). 

 

 

Figure A.7. The amount of active cathepsin K was increased in MDA-MB-231 cells 

overexpressing cathepsin K. (A) Cell lysates of hMSCs incubated with conditioned media 

from MDA-MB-231 cells overexpressing cathepsin K cultured with type I collagen gels or 

E-64 or controls were collected and assayed for active cathepsins using multiplex cathepsin 

zymography. (B) The amount of active cathepsins was quantified using ImageJ analysis. 

 

 

A.3.7 Adipogenesis is downregulated with direct or indirect 
communication from breast cancer cells 

To investigate the effects of breast cancer cell paracrine communication on adipogenic 

differentiation, hMSCs were cultured in adipogenic or control media for six days. This 
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was followed by six days culture alone or with either MDA-MB-231 or MCF-7 cells 

seeded on 0.4µm transwell inserts. The amount of adipogenic differentiation was 

determined using a fat soluble dye Oil Red O which stains lipids. Representative images 

were obtained and Oil Red O staining was quantified after dye extraction from the cells 

with isopropanol and absorbance measured using spectroscopy. Lipid accumulation was 

decreased in adipogenic hMSCs when cultured with either MDA-MB-231 or MCF-7 

cells (Fig. A.8A). To determine if this reduction in lipid accumulation was due to 

biochemical factors from the cancer cells, conditioned media from either MDA-MB-231 

or MCF-7 cells was collected and incubated with adipogenic hMSCs. The conditioned 

media from either the MDA-MB-231 or MCF-7 cells reduced the amount of lipid 

accumulation as seen in the representative images and quantification (Fig. A.8B). 

 

 

Figure A.8. Lipid accumulation decreased in adipogenic hMSCs due to secreted 

factors from breast cancer cells. (A) Adipogenic hMSCs were incubated with MDA-MB-

231 or MCF-7 breast cancer cells seeded on a 0.2 µm transwell membrane or with 

conditioned media from the two breast cancer cells. Oil Red O was used to stain lipids and 

representative images obtained using microscopy. (B) The dye was then extracted with 

isopropanol and the absorbance was quantified using spectroscopy. 

 

 

To assess if biochemical signaling from either MDA-MB-231 or MCF-7 cells reduces 

the adipogenic gene differentiation markers PPAR-γ or lipoprotein lipase (LPL), 
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adipogenic hMSCs were cultured with either MDA-MB-231 or MCF-7 cells on a 0.4 µm 

transwell or with conditioned media from the breast cancer cells. Paracrine factors from 

either of the breast cancer cells reduced both PPAR-γ (Fig. A.9A) and LPL (Fig. A.9B) 

mRNA expression as seen with both the transwell and conditioned media conditions. 

 

 

Figure A.9. Biochemical communication from breast cancer cells reduced adipogenic 

gene expression in MSCs. Adipogenic hMSCs were incubated with MDA-MB-231 or 

MCF-7 breast cancer cells seeded on a 0.2 µm transwell membrane or with 50% 

supplemented conditioned media from the two breast cancer cells for 6 days. Cells were 

lysed and mRNA expression of PPAR-γ (A) and LPL (B) was quantified with qRT-PCR. 

 

 

Next, the effects of direct cell communication between breast cancer cells and 

adipogenic hMSCs on adipogenic differentiation was investigated. Either MDA-MB-231 

or MCF-7 cells were cultured in direct contact with adipogenic or control hMSCs. The 

cells were then stained with Oil Red O, and the amount of staining was quantified by 

extracting the dye with isopropanol and measuring the absorbance. Heterotypic culture of 

MDA-MB-231 cells and adipogenic hMSCs elevated the lipid accumulation (Fig. 

A.10A). MCF-7 cells also increased the amount of lipids in adipogenic hMSCs compared 
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to the adipogenic hMSCs cultured alone. (Fig. A.10B). This was all verified with the 

quantified absorbance measurements (Fig. A.10C). 

 

 

Figure A.10. Lipid accumulation increased with heterotypic culture of breast cancer 

cells and MSCs. (A) hMSCs were cultured in adipogenic or non-inducing media for 6 

days. MDA-MB-231 or MCF-7 breast cancer cells were seeded directly on the hMSCs and 

cultured for an additional 6 days. (B) The dye was then extracted with isopropanol and the 

absorbance was quantified using spectroscopy. 

 

A.3.8 Differential regulation of cathepsin proteolytic profiles between 
osteogenic and adipogenic differentiating hMSCs 

Differentiation of hMSCs to adipocytes in mice is controlled by mouse cathepsin L [135]. 

Human MSCs were cultured in expansion, osteogenic, or adipogenic media for 21 days. 

Lysates were collected at day 7, 10, 14, 15, 18 and 21 and equal protein amounts were 

loaded for multiplex cathepsin zymography to assess if hMSCs changed their cathepsin 

proteolytic profile during osteogenic or adipogenic differentiation. Undifferentiated 

hMSCs expressed active cathepsins K, S, L, and V on days 7 and 10, but only maintained 
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active cathepsin K and V by day 14. In contrast, the osteogenic hMSCs had reduced 

amounts of cathepsins K and V on day 7 compared to the hMSC control cells, but active 

cathepsins K and V was elevated by day 14 of differentiation and was maintained 

throughout 21 days of osteogenic differentiation. Adipogenic hMSCs contained active 

cathepsins V and S at the early stages of differentiation. By the 14th day of differentiation, 

the amount of active cathepsin L was increased. At the later stages of adipogenesis, 

cathepsins K, L, S, and V were detected (Fig A.11). 

 

 

Figure A.11. Human MSCs dynamically regulate cathepsin activity during 

differentiation. Human MSCs were cultured in osteogenic, adipogenic or non-inducing 

media for 7, 10, 14, 15, 18, or 21 days. At each time point, cells were lysed and equal 

amounts of protein were loaded for multiplex cathepsin zymography. 
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A.3.9 Communication from breast cancer cells reduce the amount of 
active cathepsins in hMSCs 

 

To determine if the breast cancer cells would influence the proteolytic profiles of hMSCs, 

hMSCs were cultured for 13 days in adipogenic, or control media; followed by 

incubation with MDA-MB-231 cells for nine days cultured with adipogenic or un-

induced hMSCs. Cells were lysed and equal protein was loaded for multiplex cathepsin 

zymography. Active cathepsins S, L, and V was detected in the hMSCs cultured without 

MDA-MB-231 cells. The amount of active cathepsins was reduced by as little as 55% or 

more when MDA-MB-231 cells were cultured directly or indirectly with the hMSCs. 

MDA-MB-231 cells cultured indirectly had less of an influence on the active cathepsins 

in adipogenic hMSCs with only as much as a 27% fold decrease in active cathepsins. The 

proteolytic profiles of the adipogenic hMSCs cultured directly with MDA-MB-231 cells 

was comparable to the proteolytic profile of the MDA-MB-231 cells cultured alone (Fig. 

A.12). 
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Figure. A.12. Heterotypic cell communication influences proteolytic profiles of 

adipogenic differentiating MSCs. hMSCs were cultured in adipogenic or non-inducing 

media for 13 days. MDA-MB-231 breast cancer cells were seeded directly on the hMSCs 

or indirectly on a 0.2 µm transwell membrane for an additional 9 days. Cells were lysed 

and equal amounts of protein were loaded for multiplex cathepsin zymography and 

quantified using ImageJ. TW, transwell; DC, direct contact; MDA, MDA-MB-231 cells. 

A.4  Discussion 

Breast cancer cells that metastasize to bone promotes formation of osteolytic lesions. The 

influence of breast cancer cells on MSCs shape and differentiation into osteoblasts or 

adipocytes was investigated. This study showed that osteogenic MSCs changed their 

shape and morphology when in direct contact with breast cancer cells. Not only did the 

direct interaction of the breast cancer cells change the shape, but secreted paracrine 

factors from the breast cancer cells also caused the non-induced MSCs to take on a more 

rounded morphology and early stage osteogenic MSCs became more spindle-like. These 

changes in cellular shape and its potential effect on cellular function is important to 
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differentiation since cell morphology and shape can determine the MSC cell fate down a 

osteoblast or adipocyte lineage [206]. Other studies have demonstrated that paracrine 

factors from breast cancer cells disrupt and decrease f-actin fiber formation and focal 

adhesion plaques [210], both factors that affect cell morphology and adhesion. 

This work not only demonstrates how breast cancer cells alter the cellular 

morphology of hMSCs and early osteoblasts, but these phenotypic changes were also 

accompanied with a decrease in osteoblast differentiation as indicated by decreases in 

alkaline phosphatase activity and osteogenic gene expression of RUNX2 due to indirect 

communication. While other reports have investigated how chemokine signaling from 

MSCs promotes breast cancer cell migration recruitment [211], this work examine the 

effects of direct and indirect communication between breast cancer cells and 

differentiating MSCs. Breast cancer cells negative influence on early osteogenic MSC 

could impact the bone marrow niche by preventing osteoblast differentiation and 

ultimately bone formation and, in turn, promote osteolytic lesion establishment.  

In addition, breast cancer cells increased lipid accumulation of adipogenic MSCs but 

not via paracrine signaling. While direct communication of breast cancer cells increased 

MSC adipogenesis, lipid accumulation decreased due to secreted factors from breast 

cancer cells. Paracrine signaling from MDA-MB-231 and MCF-7 breast cancer cells also 

downregulated the adipogenic gene expression markers LPL and PPAR-γ. This highlights 

reduce commitment of MSCs to a downstream adipogenic lineage due to paracrine 

signaling from breast cancer cells. Reduction in adipocytes in a bone niche can also play 

a vital role in bone formation since paracrine signaling from adipocytes elevates 

osteogenic differentiation [212]. 
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While previous studies have shown that cathepsins K and S are regulators of 

adipogenesis [136, 203], this report demonstrates that cathepsins K, L, S, and V are 

differentially regulated during adipogenic and osteogenic differentiation. This work 

showed reduced amounts of active cathepsins V, L, and S in MSCs due to breast cancer 

cells. Down-regulation of cathepsin activity to turn-over ECM proteins could play a role 

in decreasing adipogenesis and promoting osteolytic lesions.  

Osteoblasts and adipocytes secrete and lay down different types of matrix proteins. 

During early stages of osteogenic differentiation, MSCs produce type I collagen, a matrix 

protein that has been shown to enhance osteogenic differentiation [213]. This 

investigation into the effect of breast cancer cells on MSCs differentiation has 

demonstrated that biochemical factors from breast cancer cells expressing cathepsin K 

and cultured on collagen can restore osteogenesis that was lost due to paracrine signaling 

from breast cancer cells alone. This suggests that possible cleavage fragments of collagen 

due to cathepsin K is sufficient to promote osteoblast differentiation. Although previous 

reports have used collagen gels to regulate osteogenesis, this report indicates that 

collagen fragments could also promote osteogenesis. This could have a positive feedback 

effect on differentiation since collagen fragments were shown to increase cathepsins B, 

K, and L mRNA expression and activity [214] and cathepsins are regulators of MSC 

differentiation [136, 203, 214]. 

The current study uncovered how breast cancer cells affect MSC differentiation into 

osteoblasts or adipocytes which could promote osteolytic lesion formation in the bone 

marrow environment. Understanding this regulation can assist with identifying possible 

therapeutic targets including cathepsins, which are involved in MSC differentiation. 
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A.5  Conclusion 

This study demonstrated the effect of breast cancer cell biochemical interactions on 

hMSC morphology and differentiation. When breast cancer cell metastasize to bone, 

osteolytic lesions are established. In this report, not only was differentiation toward an 

osteogenic lineage reduced, but adipogenesis was also reduced. This is crucial since 

adipocytes help to promote differentiation of osteoblasts [212]. Cathepsin-mediated 

regulation of differentiation due to cathepsin overexpression was also suggested. The 

findings in this report indicate the need to understand how breast cancer cells affect 

differentiation of bone marrow derived cells, and also how the cathepsin proteolytic 

profiles is changed within the metastatic site. 
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